A Variant of the Fourier Series in a Spherical Domain and Its Application to Modeling the Evaporation of a Water ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02

AUTHORS

Kh. Hallaci, H. Fujita Yashima

ABSTRACT

We consider a boundary value problem for a system of two linear partial differential equations of parabolic type describing the behavior of temperature and vapor density in a spherical droplet and its vicinity during the evaporation process. To study this problem, we construct a variant of the Fourier series in a spherical domain for functions with spherical symmetry. Using this series, we prove the existence and uniqueness of the solution of the problem under consideration with an unusual coupling condition for the equations, which is characteristic of evaporation. More... »

PAGES

207-226

References to SciGraph publications

  • 2014. Droplets and Sprays in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266122020070

    DOI

    http://dx.doi.org/10.1134/s0012266122020070

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147562762


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "\u00c9cole Nationale Sup\u00e9rieure d\u2019Hydraulique, Blida, Algeria", 
              "id": "http://www.grid.ac/institutes/grid.463235.5", 
              "name": [
                "\u00c9cole Nationale Sup\u00e9rieure d\u2019Hydraulique, Blida, Algeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Hallaci", 
            "givenName": "Kh.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "\u00c9cole Normale Sup\u00e9rieure de Constantine, Constantine, Algeria", 
              "id": "http://www.grid.ac/institutes/grid.442426.2", 
              "name": [
                "\u00c9cole Normale Sup\u00e9rieure de Constantine, Constantine, Algeria"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Fujita Yashima", 
            "givenName": "H.", 
            "id": "sg:person.010577300053.24", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577300053.24"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4471-6386-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1023492203", 
              "https://doi.org/10.1007/978-1-4471-6386-2"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02", 
        "datePublishedReg": "2022-02-01", 
        "description": "Abstract We consider a boundary value problem for a system of two linear partial differential\nequations of parabolic type describing the behavior of temperature and vapor density in\na spherical droplet and its vicinity during the evaporation process. To study this problem, we\nconstruct a variant of the Fourier series in a spherical domain for functions with spherical\nsymmetry. Using this series, we prove the existence and uniqueness of the solution of the problem\nunder consideration with an unusual coupling condition for the equations, which is characteristic\nof evaporation.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0012266122020070", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "1608-3083"
            ], 
            "name": "Differential Equations", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "boundary value problem", 
          "Fourier series", 
          "parabolic type", 
          "value problem", 
          "behavior of temperature", 
          "spherical domains", 
          "equations", 
          "coupling conditions", 
          "problem", 
          "spherical droplets", 
          "uniqueness", 
          "symmetry", 
          "vapor density", 
          "existence", 
          "solution", 
          "evaporation process", 
          "vicinity", 
          "domain", 
          "applications", 
          "system", 
          "function", 
          "water droplets", 
          "density", 
          "series", 
          "evaporation", 
          "consideration", 
          "behavior", 
          "temperature", 
          "variants", 
          "conditions", 
          "droplets", 
          "Abstract", 
          "process", 
          "types"
        ], 
        "name": "A Variant of the Fourier Series in a Spherical Domain and Its Application to Modeling the Evaporation of a Water Droplet", 
        "pagination": "207-226", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147562762"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266122020070"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266122020070", 
          "https://app.dimensions.ai/details/publication/pub.1147562762"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_938.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0012266122020070"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020070'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020070'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020070'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020070'


     

    This table displays all metadata directly associated to this object as RDF triples.

    104 TRIPLES      21 PREDICATES      60 URIs      51 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266122020070 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N97c0bd2b67614cccb8d38e47ea01e356
    4 schema:citation sg:pub.10.1007/978-1-4471-6386-2
    5 schema:datePublished 2022-02
    6 schema:datePublishedReg 2022-02-01
    7 schema:description Abstract We consider a boundary value problem for a system of two linear partial differential equations of parabolic type describing the behavior of temperature and vapor density in a spherical droplet and its vicinity during the evaporation process. To study this problem, we construct a variant of the Fourier series in a spherical domain for functions with spherical symmetry. Using this series, we prove the existence and uniqueness of the solution of the problem under consideration with an unusual coupling condition for the equations, which is characteristic of evaporation.
    8 schema:genre article
    9 schema:isAccessibleForFree false
    10 schema:isPartOf N9ad595ab61314769aa7d896a26e02c4d
    11 Nc92e7a2ea2b2489b9cc7fc35577aed6c
    12 sg:journal.1135881
    13 schema:keywords Abstract
    14 Fourier series
    15 applications
    16 behavior
    17 behavior of temperature
    18 boundary value problem
    19 conditions
    20 consideration
    21 coupling conditions
    22 density
    23 domain
    24 droplets
    25 equations
    26 evaporation
    27 evaporation process
    28 existence
    29 function
    30 parabolic type
    31 problem
    32 process
    33 series
    34 solution
    35 spherical domains
    36 spherical droplets
    37 symmetry
    38 system
    39 temperature
    40 types
    41 uniqueness
    42 value problem
    43 vapor density
    44 variants
    45 vicinity
    46 water droplets
    47 schema:name A Variant of the Fourier Series in a Spherical Domain and Its Application to Modeling the Evaporation of a Water Droplet
    48 schema:pagination 207-226
    49 schema:productId N4d5ccc37e7e647f7a3453de5cc34c6c7
    50 Nf80fa25f2314463c94e80e21cd68d480
    51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147562762
    52 https://doi.org/10.1134/s0012266122020070
    53 schema:sdDatePublished 2022-10-01T06:50
    54 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    55 schema:sdPublisher N7ae3afc2ef1f436fb0db53f3cb315c45
    56 schema:url https://doi.org/10.1134/s0012266122020070
    57 sgo:license sg:explorer/license/
    58 sgo:sdDataset articles
    59 rdf:type schema:ScholarlyArticle
    60 N3357e17f8324455baaefd8fb18bf7078 rdf:first sg:person.010577300053.24
    61 rdf:rest rdf:nil
    62 N4d5ccc37e7e647f7a3453de5cc34c6c7 schema:name dimensions_id
    63 schema:value pub.1147562762
    64 rdf:type schema:PropertyValue
    65 N7ae3afc2ef1f436fb0db53f3cb315c45 schema:name Springer Nature - SN SciGraph project
    66 rdf:type schema:Organization
    67 N97c0bd2b67614cccb8d38e47ea01e356 rdf:first Na4752c8b3f1b46a696b1c3461f78692a
    68 rdf:rest N3357e17f8324455baaefd8fb18bf7078
    69 N9ad595ab61314769aa7d896a26e02c4d schema:issueNumber 2
    70 rdf:type schema:PublicationIssue
    71 Na4752c8b3f1b46a696b1c3461f78692a schema:affiliation grid-institutes:grid.463235.5
    72 schema:familyName Hallaci
    73 schema:givenName Kh.
    74 rdf:type schema:Person
    75 Nc92e7a2ea2b2489b9cc7fc35577aed6c schema:volumeNumber 58
    76 rdf:type schema:PublicationVolume
    77 Nf80fa25f2314463c94e80e21cd68d480 schema:name doi
    78 schema:value 10.1134/s0012266122020070
    79 rdf:type schema:PropertyValue
    80 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    81 schema:name Mathematical Sciences
    82 rdf:type schema:DefinedTerm
    83 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    84 schema:name Pure Mathematics
    85 rdf:type schema:DefinedTerm
    86 sg:journal.1135881 schema:issn 0012-2661
    87 1608-3083
    88 schema:name Differential Equations
    89 schema:publisher Pleiades Publishing
    90 rdf:type schema:Periodical
    91 sg:person.010577300053.24 schema:affiliation grid-institutes:grid.442426.2
    92 schema:familyName Fujita Yashima
    93 schema:givenName H.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010577300053.24
    95 rdf:type schema:Person
    96 sg:pub.10.1007/978-1-4471-6386-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023492203
    97 https://doi.org/10.1007/978-1-4471-6386-2
    98 rdf:type schema:CreativeWork
    99 grid-institutes:grid.442426.2 schema:alternateName École Normale Supérieure de Constantine, Constantine, Algeria
    100 schema:name École Normale Supérieure de Constantine, Constantine, Algeria
    101 rdf:type schema:Organization
    102 grid-institutes:grid.463235.5 schema:alternateName École Nationale Supérieure d’Hydraulique, Blida, Algeria
    103 schema:name École Nationale Supérieure d’Hydraulique, Blida, Algeria
    104 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...