Convective Heat Transfer Between a Moving Solid Spherical Particle and a Viscous Gas View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02

AUTHORS

N. V. Malai, E. R. Shchukin, D. N. Efimtseva

ABSTRACT

An approximate solution of a boundary value problem for the convective heat transfer equation is obtained by the method of matched asymptotic expansions for small Péclet and Reynolds numbers. When solving the stationary system of gasdynamic heat transfer equations including the system of Navier–Stokes equations linearized in the velocity, the convective heat transfer equation, and the Poisson equation, it is assumed that the temperature dependences of the viscosity, thermal conductivity, and density of a gaseous medium are power-law. More... »

PAGES

195-206

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266122020069

DOI

http://dx.doi.org/10.1134/s0012266122020069

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1147558192


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belgorod State University, 308015, Belgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445984.0", 
          "name": [
            "Belgorod State University, 308015, Belgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Malai", 
        "givenName": "N. V.", 
        "id": "sg:person.014552736361.57", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552736361.57"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.435259.c", 
          "name": [
            "Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchukin", 
        "givenName": "E. R.", 
        "id": "sg:person.015064223043.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064223043.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belgorod State University, 308015, Belgorod, Russia", 
          "id": "http://www.grid.ac/institutes/grid.445984.0", 
          "name": [
            "Belgorod State University, 308015, Belgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Efimtseva", 
        "givenName": "D. N.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266115100079", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004467075", 
          "https://doi.org/10.1134/s0012266115100079"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1063784212100131", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018153807", 
          "https://doi.org/10.1134/s1063784212100131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.3103/s1066369x16120070", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036699491", 
          "https://doi.org/10.3103/s1066369x16120070"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2022-02", 
    "datePublishedReg": "2022-02-01", 
    "description": "Abstract An approximate solution of a boundary value problem for the convective heat transfer\nequation is obtained by the method of matched asymptotic expansions for small P\u00e9clet\nand Reynolds numbers. When solving the stationary system of gasdynamic heat transfer equations\nincluding the system of Navier\u2013Stokes equations linearized in the velocity, the convective heat\ntransfer equation, and the Poisson equation, it is assumed that the temperature dependences of\nthe viscosity, thermal conductivity, and density of a gaseous medium are power-law.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0012266122020069", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "1608-3083"
        ], 
        "name": "Differential Equations", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "58"
      }
    ], 
    "keywords": [
      "convective heat transfer", 
      "transfer equation", 
      "heat transfer", 
      "Navier-Stokes equations", 
      "boundary value problem", 
      "solid spherical particles", 
      "heat transfer equation", 
      "approximate solution", 
      "value problem", 
      "asymptotic expansion", 
      "Poisson equation", 
      "viscous gas", 
      "stationary system", 
      "equations", 
      "thermal conductivity", 
      "Reynolds number", 
      "convective heat", 
      "spherical particles", 
      "gaseous medium", 
      "temperature dependence", 
      "P\u00e9clet", 
      "conductivity", 
      "heat", 
      "gas", 
      "viscosity", 
      "velocity", 
      "transfer", 
      "problem", 
      "solution", 
      "particles", 
      "system", 
      "dependence", 
      "density", 
      "expansion", 
      "method", 
      "number", 
      "medium", 
      "Abstract"
    ], 
    "name": "Convective Heat Transfer Between a Moving Solid Spherical Particle and a Viscous Gas", 
    "pagination": "195-206", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1147558192"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266122020069"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266122020069", 
      "https://app.dimensions.ai/details/publication/pub.1147558192"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:51", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_950.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0012266122020069"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020069'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020069'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020069'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266122020069'


 

This table displays all metadata directly associated to this object as RDF triples.

127 TRIPLES      21 PREDICATES      67 URIs      55 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266122020069 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 anzsrc-for:0102
4 schema:author N27d450cd1b95474aac2d7f6bb47c62c7
5 schema:citation sg:pub.10.1134/s0012266115100079
6 sg:pub.10.1134/s1063784212100131
7 sg:pub.10.3103/s1066369x16120070
8 schema:datePublished 2022-02
9 schema:datePublishedReg 2022-02-01
10 schema:description Abstract An approximate solution of a boundary value problem for the convective heat transfer equation is obtained by the method of matched asymptotic expansions for small Péclet and Reynolds numbers. When solving the stationary system of gasdynamic heat transfer equations including the system of Navier–Stokes equations linearized in the velocity, the convective heat transfer equation, and the Poisson equation, it is assumed that the temperature dependences of the viscosity, thermal conductivity, and density of a gaseous medium are power-law.
11 schema:genre article
12 schema:isAccessibleForFree false
13 schema:isPartOf N58577596068f45f698dd495cabf420f2
14 Na85707c9f3444bddb3461b0b6230409e
15 sg:journal.1135881
16 schema:keywords Abstract
17 Navier-Stokes equations
18 Poisson equation
19 Péclet
20 Reynolds number
21 approximate solution
22 asymptotic expansion
23 boundary value problem
24 conductivity
25 convective heat
26 convective heat transfer
27 density
28 dependence
29 equations
30 expansion
31 gas
32 gaseous medium
33 heat
34 heat transfer
35 heat transfer equation
36 medium
37 method
38 number
39 particles
40 problem
41 solid spherical particles
42 solution
43 spherical particles
44 stationary system
45 system
46 temperature dependence
47 thermal conductivity
48 transfer
49 transfer equation
50 value problem
51 velocity
52 viscosity
53 viscous gas
54 schema:name Convective Heat Transfer Between a Moving Solid Spherical Particle and a Viscous Gas
55 schema:pagination 195-206
56 schema:productId N544a50721c9740c59328f8a8284c885f
57 N9059e13c593f414eb53dc596fa9e3d74
58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147558192
59 https://doi.org/10.1134/s0012266122020069
60 schema:sdDatePublished 2022-10-01T06:51
61 schema:sdLicense https://scigraph.springernature.com/explorer/license/
62 schema:sdPublisher Nba85c56c8547451792c007925028db9b
63 schema:url https://doi.org/10.1134/s0012266122020069
64 sgo:license sg:explorer/license/
65 sgo:sdDataset articles
66 rdf:type schema:ScholarlyArticle
67 N101c7d02f6ef4d57aa3a370de2ff569c rdf:first Ne9512e8ad1ac4c6d9332b4585f238fe5
68 rdf:rest rdf:nil
69 N27d450cd1b95474aac2d7f6bb47c62c7 rdf:first sg:person.014552736361.57
70 rdf:rest N5bec2152a54847a1a6c5d213190f750c
71 N544a50721c9740c59328f8a8284c885f schema:name dimensions_id
72 schema:value pub.1147558192
73 rdf:type schema:PropertyValue
74 N58577596068f45f698dd495cabf420f2 schema:issueNumber 2
75 rdf:type schema:PublicationIssue
76 N5bec2152a54847a1a6c5d213190f750c rdf:first sg:person.015064223043.95
77 rdf:rest N101c7d02f6ef4d57aa3a370de2ff569c
78 N9059e13c593f414eb53dc596fa9e3d74 schema:name doi
79 schema:value 10.1134/s0012266122020069
80 rdf:type schema:PropertyValue
81 Na85707c9f3444bddb3461b0b6230409e schema:volumeNumber 58
82 rdf:type schema:PublicationVolume
83 Nba85c56c8547451792c007925028db9b schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Ne9512e8ad1ac4c6d9332b4585f238fe5 schema:affiliation grid-institutes:grid.445984.0
86 schema:familyName Efimtseva
87 schema:givenName D. N.
88 rdf:type schema:Person
89 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
90 schema:name Mathematical Sciences
91 rdf:type schema:DefinedTerm
92 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
93 schema:name Pure Mathematics
94 rdf:type schema:DefinedTerm
95 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
96 schema:name Applied Mathematics
97 rdf:type schema:DefinedTerm
98 sg:journal.1135881 schema:issn 0012-2661
99 1608-3083
100 schema:name Differential Equations
101 schema:publisher Pleiades Publishing
102 rdf:type schema:Periodical
103 sg:person.014552736361.57 schema:affiliation grid-institutes:grid.445984.0
104 schema:familyName Malai
105 schema:givenName N. V.
106 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014552736361.57
107 rdf:type schema:Person
108 sg:person.015064223043.95 schema:affiliation grid-institutes:grid.435259.c
109 schema:familyName Shchukin
110 schema:givenName E. R.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015064223043.95
112 rdf:type schema:Person
113 sg:pub.10.1134/s0012266115100079 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004467075
114 https://doi.org/10.1134/s0012266115100079
115 rdf:type schema:CreativeWork
116 sg:pub.10.1134/s1063784212100131 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018153807
117 https://doi.org/10.1134/s1063784212100131
118 rdf:type schema:CreativeWork
119 sg:pub.10.3103/s1066369x16120070 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036699491
120 https://doi.org/10.3103/s1066369x16120070
121 rdf:type schema:CreativeWork
122 grid-institutes:grid.435259.c schema:alternateName Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia
123 schema:name Joint Institute for High Temperatures of the Russian Academy of Sciences, 125412, Moscow, Russia
124 rdf:type schema:Organization
125 grid-institutes:grid.445984.0 schema:alternateName Belgorod State University, 308015, Belgorod, Russia
126 schema:name Belgorod State University, 308015, Belgorod, Russia
127 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...