Example of a Differential System with Complete Perron and Upper-Limit Instability but Massive Partial Stability View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2022-02

AUTHORS

A. A. Bondarev

ABSTRACT

It is constructively proved that the complete Perron and upper-limit instability (in contrast to the Lyapunov instability) of a two-dimensional differential system, generally speaking, does not imply its global instability. Moreover, the example of a completely unstable smooth nonlinear system constructed in this paper, in addition, has zero first approximation (along the zero solution) and not just partial but even massive partial stability. More... »

PAGES

147-153

References to SciGraph publications

  • 2021-03. An Example of Complete but Not Global Perron Instability in MOSCOW UNIVERSITY MATHEMATICS BULLETIN
  • 2019-05. Definition and Some Properties of Perron Stability in DIFFERENTIAL EQUATIONS
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s001226612202001x

    DOI

    http://dx.doi.org/10.1134/s001226612202001x

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1147558908


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lomonosov Moscow State University, 119991, Moscow, Russia", 
              "id": "http://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Lomonosov Moscow State University, 119991, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Bondarev", 
            "givenName": "A. A.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.3103/s0027132221020030", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1139876458", 
              "https://doi.org/10.3103/s0027132221020030"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266119050045", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1117051131", 
              "https://doi.org/10.1134/s0012266119050045"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2022-02", 
        "datePublishedReg": "2022-02-01", 
        "description": "Abstract It is constructively proved that the complete Perron and upper-limit instability (in\ncontrast to the Lyapunov instability) of a two-dimensional differential system, generally speaking,\ndoes not imply its global instability. Moreover, the example of a completely unstable smooth\nnonlinear system constructed in this paper, in addition, has zero first approximation (along the\nzero solution) and not just partial but even massive partial stability.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s001226612202001x", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "1608-3083"
            ], 
            "name": "Differential Equations", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "58"
          }
        ], 
        "keywords": [
          "differential systems", 
          "partial stability", 
          "two-dimensional differential system", 
          "first approximation", 
          "global instability", 
          "Perron", 
          "approximation", 
          "instability", 
          "system", 
          "stability", 
          "Abstract", 
          "addition", 
          "example", 
          "paper"
        ], 
        "name": "Example of a Differential System with Complete Perron and Upper-Limit Instability but Massive Partial Stability", 
        "pagination": "147-153", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1147558908"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s001226612202001x"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s001226612202001x", 
          "https://app.dimensions.ai/details/publication/pub.1147558908"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-10-01T06:50", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_932.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s001226612202001x"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s001226612202001x'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s001226612202001x'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s001226612202001x'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s001226612202001x'


     

    This table displays all metadata directly associated to this object as RDF triples.

    78 TRIPLES      21 PREDICATES      41 URIs      31 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s001226612202001x schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author N274f6436431a4beba989d17839f60c89
    4 schema:citation sg:pub.10.1134/s0012266119050045
    5 sg:pub.10.3103/s0027132221020030
    6 schema:datePublished 2022-02
    7 schema:datePublishedReg 2022-02-01
    8 schema:description Abstract It is constructively proved that the complete Perron and upper-limit instability (in contrast to the Lyapunov instability) of a two-dimensional differential system, generally speaking, does not imply its global instability. Moreover, the example of a completely unstable smooth nonlinear system constructed in this paper, in addition, has zero first approximation (along the zero solution) and not just partial but even massive partial stability.
    9 schema:genre article
    10 schema:isAccessibleForFree false
    11 schema:isPartOf Ncff6cdb6069c4a2a98e8095f53a7d9e6
    12 Nd3fa88ad81a44ca482e188870e065d1b
    13 sg:journal.1135881
    14 schema:keywords Abstract
    15 Perron
    16 addition
    17 approximation
    18 differential systems
    19 example
    20 first approximation
    21 global instability
    22 instability
    23 paper
    24 partial stability
    25 stability
    26 system
    27 two-dimensional differential system
    28 schema:name Example of a Differential System with Complete Perron and Upper-Limit Instability but Massive Partial Stability
    29 schema:pagination 147-153
    30 schema:productId N2d399237124c4be08fce2128dab6dd3d
    31 N96a6cb35697f49fa97d4e6e9f88bf1b3
    32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1147558908
    33 https://doi.org/10.1134/s001226612202001x
    34 schema:sdDatePublished 2022-10-01T06:50
    35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    36 schema:sdPublisher N88d790129d414237bbe4f231f573063c
    37 schema:url https://doi.org/10.1134/s001226612202001x
    38 sgo:license sg:explorer/license/
    39 sgo:sdDataset articles
    40 rdf:type schema:ScholarlyArticle
    41 N274f6436431a4beba989d17839f60c89 rdf:first N29640a00fb0d4fb19ee066893be1531b
    42 rdf:rest rdf:nil
    43 N29640a00fb0d4fb19ee066893be1531b schema:affiliation grid-institutes:grid.14476.30
    44 schema:familyName Bondarev
    45 schema:givenName A. A.
    46 rdf:type schema:Person
    47 N2d399237124c4be08fce2128dab6dd3d schema:name dimensions_id
    48 schema:value pub.1147558908
    49 rdf:type schema:PropertyValue
    50 N88d790129d414237bbe4f231f573063c schema:name Springer Nature - SN SciGraph project
    51 rdf:type schema:Organization
    52 N96a6cb35697f49fa97d4e6e9f88bf1b3 schema:name doi
    53 schema:value 10.1134/s001226612202001x
    54 rdf:type schema:PropertyValue
    55 Ncff6cdb6069c4a2a98e8095f53a7d9e6 schema:volumeNumber 58
    56 rdf:type schema:PublicationVolume
    57 Nd3fa88ad81a44ca482e188870e065d1b schema:issueNumber 2
    58 rdf:type schema:PublicationIssue
    59 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    60 schema:name Mathematical Sciences
    61 rdf:type schema:DefinedTerm
    62 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    63 schema:name Applied Mathematics
    64 rdf:type schema:DefinedTerm
    65 sg:journal.1135881 schema:issn 0012-2661
    66 1608-3083
    67 schema:name Differential Equations
    68 schema:publisher Pleiades Publishing
    69 rdf:type schema:Periodical
    70 sg:pub.10.1134/s0012266119050045 schema:sameAs https://app.dimensions.ai/details/publication/pub.1117051131
    71 https://doi.org/10.1134/s0012266119050045
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.3103/s0027132221020030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1139876458
    74 https://doi.org/10.3103/s0027132221020030
    75 rdf:type schema:CreativeWork
    76 grid-institutes:grid.14476.30 schema:alternateName Lomonosov Moscow State University, 119991, Moscow, Russia
    77 schema:name Lomonosov Moscow State University, 119991, Moscow, Russia
    78 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...