Continual version of the Perron effect of change of values of the characteristic exponents View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-11

AUTHORS

N. A. Izobov, A. V. Il’in

ABSTRACT

We prove the existence of a perturbed two-dimensional system of ordinary differential equations such that its linear approximation has arbitrarily prescribed negative characteristic exponents, the perturbation is of arbitrarily prescribed higher order of smallness in a neighborhood of the origin, all of its nontrivial solutions are infinitely extendible to the right, and the whole set of their Lyapunov exponents is contained in the positive half-line, is bounded, and has positive Lebesgue measure. In the general case, we also obtain explicit representations of the exponents of these solutions via their initial values. More... »

PAGES

1393-1405

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266117110015

DOI

http://dx.doi.org/10.1134/s0012266117110015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1099735920


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.425294.c", 
          "name": [
            "Institute of Mathematics, National Academy of Sciences of Belarus, 220072, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izobov", 
        "givenName": "N. A.", 
        "id": "sg:person.012702260047.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "A. V.", 
        "id": "sg:person.011171570231.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s001226611211002x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015983660", 
          "https://doi.org/10.1134/s001226611211002x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266109040041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345185", 
          "https://doi.org/10.1134/s0012266109040041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266109040041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345185", 
          "https://doi.org/10.1134/s0012266109040041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01194662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024748836", 
          "https://doi.org/10.1007/bf01194662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266115110026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024947382", 
          "https://doi.org/10.1134/s0012266115110026"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110100034", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036990039", 
          "https://doi.org/10.1134/s0012266110100034"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266113120021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043090837", 
          "https://doi.org/10.1134/s0012266113120021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226611611001x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045315749", 
          "https://doi.org/10.1134/s001226611611001x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226611611001x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045315749", 
          "https://doi.org/10.1134/s001226611611001x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1064562414050032", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049032687", 
          "https://doi.org/10.1134/s1064562414050032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110110029", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052294480", 
          "https://doi.org/10.1134/s0012266110110029"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0218127407017732", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062955051"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-11", 
    "datePublishedReg": "2017-11-01", 
    "description": "We prove the existence of a perturbed two-dimensional system of ordinary differential equations such that its linear approximation has arbitrarily prescribed negative characteristic exponents, the perturbation is of arbitrarily prescribed higher order of smallness in a neighborhood of the origin, all of its nontrivial solutions are infinitely extendible to the right, and the whole set of their Lyapunov exponents is contained in the positive half-line, is bounded, and has positive Lebesgue measure. In the general case, we also obtain explicit representations of the exponents of these solutions via their initial values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266117110015", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Continual version of the Perron effect of change of values of the characteristic exponents", 
    "pagination": "1393-1405", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "584050e3daa9ede90fd6c43db5b8fd39227f33fc5a8134f34a020c3f5b818583"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266117110015"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1099735920"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266117110015", 
      "https://app.dimensions.ai/details/publication/pub.1099735920"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:43", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000493.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266117110015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266117110015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266117110015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266117110015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266117110015'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266117110015 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N1927121f60614b14863f444654e93d7c
4 schema:citation sg:pub.10.1007/bf01194662
5 sg:pub.10.1134/s0012266109040041
6 sg:pub.10.1134/s0012266110100034
7 sg:pub.10.1134/s0012266110110029
8 sg:pub.10.1134/s001226611211002x
9 sg:pub.10.1134/s0012266113120021
10 sg:pub.10.1134/s0012266115110026
11 sg:pub.10.1134/s001226611611001x
12 sg:pub.10.1134/s1064562414050032
13 https://doi.org/10.1142/s0218127407017732
14 schema:datePublished 2017-11
15 schema:datePublishedReg 2017-11-01
16 schema:description We prove the existence of a perturbed two-dimensional system of ordinary differential equations such that its linear approximation has arbitrarily prescribed negative characteristic exponents, the perturbation is of arbitrarily prescribed higher order of smallness in a neighborhood of the origin, all of its nontrivial solutions are infinitely extendible to the right, and the whole set of their Lyapunov exponents is contained in the positive half-line, is bounded, and has positive Lebesgue measure. In the general case, we also obtain explicit representations of the exponents of these solutions via their initial values.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N460d528386504bcf9123be929182caed
21 N60b754da5e0244d2a3d094b9b6de6d03
22 sg:journal.1135881
23 schema:name Continual version of the Perron effect of change of values of the characteristic exponents
24 schema:pagination 1393-1405
25 schema:productId N03398980d52e4d28b3b91c4cb061e26a
26 Na44f05091eab4f689bca1e843ff9c503
27 Nfa8af5abe06f45588bca50c394d7c314
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1099735920
29 https://doi.org/10.1134/s0012266117110015
30 schema:sdDatePublished 2019-04-10T20:43
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher N16c79db58390428483d550817085758e
33 schema:url http://link.springer.com/10.1134/S0012266117110015
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N03398980d52e4d28b3b91c4cb061e26a schema:name dimensions_id
38 schema:value pub.1099735920
39 rdf:type schema:PropertyValue
40 N16c79db58390428483d550817085758e schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N1927121f60614b14863f444654e93d7c rdf:first sg:person.012702260047.53
43 rdf:rest N9149697200ec4ec5b9a018f947c7f952
44 N460d528386504bcf9123be929182caed schema:issueNumber 11
45 rdf:type schema:PublicationIssue
46 N60b754da5e0244d2a3d094b9b6de6d03 schema:volumeNumber 53
47 rdf:type schema:PublicationVolume
48 N9149697200ec4ec5b9a018f947c7f952 rdf:first sg:person.011171570231.42
49 rdf:rest rdf:nil
50 Na44f05091eab4f689bca1e843ff9c503 schema:name doi
51 schema:value 10.1134/s0012266117110015
52 rdf:type schema:PropertyValue
53 Nfa8af5abe06f45588bca50c394d7c314 schema:name readcube_id
54 schema:value 584050e3daa9ede90fd6c43db5b8fd39227f33fc5a8134f34a020c3f5b818583
55 rdf:type schema:PropertyValue
56 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
57 schema:name Mathematical Sciences
58 rdf:type schema:DefinedTerm
59 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
60 schema:name Pure Mathematics
61 rdf:type schema:DefinedTerm
62 sg:journal.1135881 schema:issn 0012-2661
63 0374-0641
64 schema:name Differential Equations
65 rdf:type schema:Periodical
66 sg:person.011171570231.42 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
67 schema:familyName Il’in
68 schema:givenName A. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42
70 rdf:type schema:Person
71 sg:person.012702260047.53 schema:affiliation https://www.grid.ac/institutes/grid.425294.c
72 schema:familyName Izobov
73 schema:givenName N. A.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53
75 rdf:type schema:Person
76 sg:pub.10.1007/bf01194662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024748836
77 https://doi.org/10.1007/bf01194662
78 rdf:type schema:CreativeWork
79 sg:pub.10.1134/s0012266109040041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345185
80 https://doi.org/10.1134/s0012266109040041
81 rdf:type schema:CreativeWork
82 sg:pub.10.1134/s0012266110100034 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036990039
83 https://doi.org/10.1134/s0012266110100034
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0012266110110029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052294480
86 https://doi.org/10.1134/s0012266110110029
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s001226611211002x schema:sameAs https://app.dimensions.ai/details/publication/pub.1015983660
89 https://doi.org/10.1134/s001226611211002x
90 rdf:type schema:CreativeWork
91 sg:pub.10.1134/s0012266113120021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043090837
92 https://doi.org/10.1134/s0012266113120021
93 rdf:type schema:CreativeWork
94 sg:pub.10.1134/s0012266115110026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947382
95 https://doi.org/10.1134/s0012266115110026
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/s001226611611001x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045315749
98 https://doi.org/10.1134/s001226611611001x
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/s1064562414050032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049032687
101 https://doi.org/10.1134/s1064562414050032
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1142/s0218127407017732 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062955051
104 rdf:type schema:CreativeWork
105 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
106 schema:name Lomonosov Moscow State University, 119991, Moscow, Russia
107 rdf:type schema:Organization
108 https://www.grid.ac/institutes/grid.425294.c schema:alternateName Institute of Mathematics
109 schema:name Institute of Mathematics, National Academy of Sciences of Belarus, 220072, Minsk, Belarus
110 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...