Dulac–Cherkas criterion for exact estimation of the number of limit cycles of autonomous systems on a plane View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-02

AUTHORS

A. A. Grin’, A. V. Kuz’mich

ABSTRACT

The problem of exact nonlocal estimation of the number of limit cycles surrounding one point of rest in a simply connected domain of the real phase space is considered for autonomous systems of differential equations with continuously differentiable right-hand sides. Three approaches to solving this problem are proposed that are based on sequential two-step usage of the Dulac–Cherkas criterion, which makes it possible to find closed transversal curves dividing the connected domain in doubly connected subdomains that surround the point of rest, with the system having precisely one limit cycle in each of them. The effectiveness of these approaches is exemplified with polynomial Liènard systems, a generalized van der Pol system, and a perturbed Hamiltonian system. For some systems, the derived estimate holds true in the entire phase space. More... »

PAGES

171-179

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266117020033

DOI

http://dx.doi.org/10.1134/s0012266117020033

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1084222640


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, 230023, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Grin\u2019", 
        "givenName": "A. A.", 
        "id": "sg:person.015427640763.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427640763.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, 230023, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuz\u2019mich", 
        "givenName": "A. V.", 
        "id": "sg:person.010476224225.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476224225.48"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0273-0979-02-00946-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000303229"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2013.05.052", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007053780"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266106060139", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017670207", 
          "https://doi.org/10.1134/s0012266106060139"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110010076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040874501", 
          "https://doi.org/10.1134/s0012266110010076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110010076", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040874501", 
          "https://doi.org/10.1134/s0012266110010076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110060066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048639701", 
          "https://doi.org/10.1134/s0012266110060066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266110060066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048639701", 
          "https://doi.org/10.1134/s0012266110060066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14232/ejqtde.2011.1.35", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067218738"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-02", 
    "datePublishedReg": "2017-02-01", 
    "description": "The problem of exact nonlocal estimation of the number of limit cycles surrounding one point of rest in a simply connected domain of the real phase space is considered for autonomous systems of differential equations with continuously differentiable right-hand sides. Three approaches to solving this problem are proposed that are based on sequential two-step usage of the Dulac\u2013Cherkas criterion, which makes it possible to find closed transversal curves dividing the connected domain in doubly connected subdomains that surround the point of rest, with the system having precisely one limit cycle in each of them. The effectiveness of these approaches is exemplified with polynomial Li\u00e8nard systems, a generalized van der Pol system, and a perturbed Hamiltonian system. For some systems, the derived estimate holds true in the entire phase space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266117020033", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "53"
      }
    ], 
    "name": "Dulac\u2013Cherkas criterion for exact estimation of the number of limit cycles of autonomous systems on a plane", 
    "pagination": "171-179", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b9e4b88fc62b9f4512f269ae960b7a8451d3e9ca4c635123008ace817a2cc7b2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266117020033"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1084222640"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266117020033", 
      "https://app.dimensions.ai/details/publication/pub.1084222640"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000484.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266117020033"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266117020033'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266117020033'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266117020033'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266117020033'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266117020033 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N9059afd1a7774b678bb46580d30d8ea6
4 schema:citation sg:pub.10.1134/s0012266106060139
5 sg:pub.10.1134/s0012266110010076
6 sg:pub.10.1134/s0012266110060066
7 https://doi.org/10.1016/j.jmaa.2013.05.052
8 https://doi.org/10.1090/s0273-0979-02-00946-1
9 https://doi.org/10.14232/ejqtde.2011.1.35
10 schema:datePublished 2017-02
11 schema:datePublishedReg 2017-02-01
12 schema:description The problem of exact nonlocal estimation of the number of limit cycles surrounding one point of rest in a simply connected domain of the real phase space is considered for autonomous systems of differential equations with continuously differentiable right-hand sides. Three approaches to solving this problem are proposed that are based on sequential two-step usage of the Dulac–Cherkas criterion, which makes it possible to find closed transversal curves dividing the connected domain in doubly connected subdomains that surround the point of rest, with the system having precisely one limit cycle in each of them. The effectiveness of these approaches is exemplified with polynomial Liènard systems, a generalized van der Pol system, and a perturbed Hamiltonian system. For some systems, the derived estimate holds true in the entire phase space.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N05c84279c3ab4bc58a4d92780f6f71f6
17 N64f398e9353345b19891bf991b32b391
18 sg:journal.1135881
19 schema:name Dulac–Cherkas criterion for exact estimation of the number of limit cycles of autonomous systems on a plane
20 schema:pagination 171-179
21 schema:productId N5f269456e7d448f999874ec258c82061
22 N83d3e01f76c04dbc96c9d73367a6d253
23 Nc023e63d11af4865a56e8b24324d7edd
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084222640
25 https://doi.org/10.1134/s0012266117020033
26 schema:sdDatePublished 2019-04-10T14:54
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nd4a3baee36e94482b80a408531643a09
29 schema:url http://link.springer.com/10.1134/S0012266117020033
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N05c84279c3ab4bc58a4d92780f6f71f6 schema:volumeNumber 53
34 rdf:type schema:PublicationVolume
35 N5f269456e7d448f999874ec258c82061 schema:name doi
36 schema:value 10.1134/s0012266117020033
37 rdf:type schema:PropertyValue
38 N64f398e9353345b19891bf991b32b391 schema:issueNumber 2
39 rdf:type schema:PublicationIssue
40 N83d3e01f76c04dbc96c9d73367a6d253 schema:name readcube_id
41 schema:value b9e4b88fc62b9f4512f269ae960b7a8451d3e9ca4c635123008ace817a2cc7b2
42 rdf:type schema:PropertyValue
43 N9059afd1a7774b678bb46580d30d8ea6 rdf:first sg:person.015427640763.26
44 rdf:rest Ne539c0460a994d73b982049ebbc60d97
45 Nc023e63d11af4865a56e8b24324d7edd schema:name dimensions_id
46 schema:value pub.1084222640
47 rdf:type schema:PropertyValue
48 Nd4a3baee36e94482b80a408531643a09 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ne539c0460a994d73b982049ebbc60d97 rdf:first sg:person.010476224225.48
51 rdf:rest rdf:nil
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1135881 schema:issn 0012-2661
59 0374-0641
60 schema:name Differential Equations
61 rdf:type schema:Periodical
62 sg:person.010476224225.48 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
63 schema:familyName Kuz’mich
64 schema:givenName A. V.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010476224225.48
66 rdf:type schema:Person
67 sg:person.015427640763.26 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
68 schema:familyName Grin’
69 schema:givenName A. A.
70 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015427640763.26
71 rdf:type schema:Person
72 sg:pub.10.1134/s0012266106060139 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017670207
73 https://doi.org/10.1134/s0012266106060139
74 rdf:type schema:CreativeWork
75 sg:pub.10.1134/s0012266110010076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040874501
76 https://doi.org/10.1134/s0012266110010076
77 rdf:type schema:CreativeWork
78 sg:pub.10.1134/s0012266110060066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048639701
79 https://doi.org/10.1134/s0012266110060066
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1016/j.jmaa.2013.05.052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007053780
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1090/s0273-0979-02-00946-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000303229
84 rdf:type schema:CreativeWork
85 https://doi.org/10.14232/ejqtde.2011.1.35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067218738
86 rdf:type schema:CreativeWork
87 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
88 schema:name Yanka Kupala State University of Grodno, 230023, Grodno, Belarus
89 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...