Perron effect of infinite change of values of characteristic exponents in any neighborhood of the origin View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-11

AUTHORS

N. A. Izobov, A. V. Il’in

ABSTRACT

We develop our earlier generalizations of the Perron effect of change of values of characteristic exponents for arbitrary parameters m > 1 and λ1 ≤ λ2 < 0 and an arbitrary bounded countable set β ⊂ [λ1,+∞), β ∩ [λ2,+∞) ≠ Ø, and show that there exists a two-dimensional differential system of linear approximation with bounded coefficients infinitely differentiable on the positive half-line and with characteristic exponents λ1 and λ2 and an infinitely differentiable perturbation infinitesimal of order m >1 in a neighborhood of the origin and possibly growing outside the neighborhood such that the nontrivial solutions of the perturbed system are infinitely extendible and the characteristic exponents of solutions issuing from any neighborhood of the origin form exactly the set β. In addition, we generalize this infinite version of the Perron effect in a neighborhood of the origin to other points of the plane of initial values of solutions. More... »

PAGES

1413-1424

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266115110026

DOI

http://dx.doi.org/10.1134/s0012266115110026

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1024947382


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Applied Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Institute of Mathematics, National Academy of Sciences, Minsk, Belarus", 
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izobov", 
        "givenName": "N. A.", 
        "id": "sg:person.012702260047.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Mathematics", 
          "id": "https://www.grid.ac/institutes/grid.425294.c", 
          "name": [
            "Institute of Mathematics, National Academy of Sciences, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "A. V.", 
        "id": "sg:person.011171570231.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266109040041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345185", 
          "https://doi.org/10.1134/s0012266109040041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266109040041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024345185", 
          "https://doi.org/10.1134/s0012266109040041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01194662", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024748836", 
          "https://doi.org/10.1007/bf01194662"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266113120021", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043090837", 
          "https://doi.org/10.1134/s0012266113120021"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7868/s0869565214200055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074114596"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-11", 
    "datePublishedReg": "2015-11-01", 
    "description": "We develop our earlier generalizations of the Perron effect of change of values of characteristic exponents for arbitrary parameters m > 1 and \u03bb1 \u2264 \u03bb2 < 0 and an arbitrary bounded countable set \u03b2 \u2282 [\u03bb1,+\u221e), \u03b2 \u2229 [\u03bb2,+\u221e) \u2260 \u00d8, and show that there exists a two-dimensional differential system of linear approximation with bounded coefficients infinitely differentiable on the positive half-line and with characteristic exponents \u03bb1 and \u03bb2 and an infinitely differentiable perturbation infinitesimal of order m >1 in a neighborhood of the origin and possibly growing outside the neighborhood such that the nontrivial solutions of the perturbed system are infinitely extendible and the characteristic exponents of solutions issuing from any neighborhood of the origin form exactly the set \u03b2. In addition, we generalize this infinite version of the Perron effect in a neighborhood of the origin to other points of the plane of initial values of solutions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266115110026", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Perron effect of infinite change of values of characteristic exponents in any neighborhood of the origin", 
    "pagination": "1413-1424", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "76d94852487c8b1adb81b9ee597fa6ec87af6d36124c8a8f5b11d0d1951192d0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266115110026"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1024947382"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266115110026", 
      "https://app.dimensions.ai/details/publication/pub.1024947382"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T14:06", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266115110026"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266115110026'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266115110026'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266115110026'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266115110026'


 

This table displays all metadata directly associated to this object as RDF triples.

87 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266115110026 schema:about anzsrc-for:01
2 anzsrc-for:0102
3 schema:author Nf8c8edd6870445b18d11bda669fa2254
4 schema:citation sg:pub.10.1007/bf01194662
5 sg:pub.10.1134/s0012266109040041
6 sg:pub.10.1134/s0012266113120021
7 https://doi.org/10.7868/s0869565214200055
8 schema:datePublished 2015-11
9 schema:datePublishedReg 2015-11-01
10 schema:description We develop our earlier generalizations of the Perron effect of change of values of characteristic exponents for arbitrary parameters m > 1 and λ1 ≤ λ2 < 0 and an arbitrary bounded countable set β ⊂ [λ1,+∞), β ∩ [λ2,+∞) ≠ Ø, and show that there exists a two-dimensional differential system of linear approximation with bounded coefficients infinitely differentiable on the positive half-line and with characteristic exponents λ1 and λ2 and an infinitely differentiable perturbation infinitesimal of order m >1 in a neighborhood of the origin and possibly growing outside the neighborhood such that the nontrivial solutions of the perturbed system are infinitely extendible and the characteristic exponents of solutions issuing from any neighborhood of the origin form exactly the set β. In addition, we generalize this infinite version of the Perron effect in a neighborhood of the origin to other points of the plane of initial values of solutions.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Ncb86318f2342482988039c5adbfc3b51
15 Nd42c6a4bde9b4ca893545b221be4e819
16 sg:journal.1135881
17 schema:name Perron effect of infinite change of values of characteristic exponents in any neighborhood of the origin
18 schema:pagination 1413-1424
19 schema:productId N0627e3bbb7a74bcdbbd2b5fecbcdaafa
20 Na1c007a6eafa4b869d02c60eacb91324
21 Nd71af92a6d5d4116b52f13539aade3b6
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024947382
23 https://doi.org/10.1134/s0012266115110026
24 schema:sdDatePublished 2019-04-10T14:06
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nba6cfa79bf8a4e2899e667ea3a1d95fe
27 schema:url http://link.springer.com/10.1134/S0012266115110026
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N0627e3bbb7a74bcdbbd2b5fecbcdaafa schema:name readcube_id
32 schema:value 76d94852487c8b1adb81b9ee597fa6ec87af6d36124c8a8f5b11d0d1951192d0
33 rdf:type schema:PropertyValue
34 N1ccf41b9802e4e038b4dc8b63e23ba67 rdf:first sg:person.011171570231.42
35 rdf:rest rdf:nil
36 Na1c007a6eafa4b869d02c60eacb91324 schema:name dimensions_id
37 schema:value pub.1024947382
38 rdf:type schema:PropertyValue
39 Nba6cfa79bf8a4e2899e667ea3a1d95fe schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 Ncb86318f2342482988039c5adbfc3b51 schema:volumeNumber 51
42 rdf:type schema:PublicationVolume
43 Nd42c6a4bde9b4ca893545b221be4e819 schema:issueNumber 11
44 rdf:type schema:PublicationIssue
45 Nd71af92a6d5d4116b52f13539aade3b6 schema:name doi
46 schema:value 10.1134/s0012266115110026
47 rdf:type schema:PropertyValue
48 Nf8c8edd6870445b18d11bda669fa2254 rdf:first sg:person.012702260047.53
49 rdf:rest N1ccf41b9802e4e038b4dc8b63e23ba67
50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
51 schema:name Mathematical Sciences
52 rdf:type schema:DefinedTerm
53 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
54 schema:name Applied Mathematics
55 rdf:type schema:DefinedTerm
56 sg:journal.1135881 schema:issn 0012-2661
57 0374-0641
58 schema:name Differential Equations
59 rdf:type schema:Periodical
60 sg:person.011171570231.42 schema:affiliation https://www.grid.ac/institutes/grid.425294.c
61 schema:familyName Il’in
62 schema:givenName A. V.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42
64 rdf:type schema:Person
65 sg:person.012702260047.53 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
66 schema:familyName Izobov
67 schema:givenName N. A.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53
69 rdf:type schema:Person
70 sg:pub.10.1007/bf01194662 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024748836
71 https://doi.org/10.1007/bf01194662
72 rdf:type schema:CreativeWork
73 sg:pub.10.1134/s0012266109040041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024345185
74 https://doi.org/10.1134/s0012266109040041
75 rdf:type schema:CreativeWork
76 sg:pub.10.1134/s0012266113120021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043090837
77 https://doi.org/10.1134/s0012266113120021
78 rdf:type schema:CreativeWork
79 https://doi.org/10.7868/s0869565214200055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074114596
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
82 schema:name Institute of Mathematics, National Academy of Sciences, Minsk, Belarus
83 Lomonosov Moscow State University, Moscow, Russia
84 rdf:type schema:Organization
85 https://www.grid.ac/institutes/grid.425294.c schema:alternateName Institute of Mathematics
86 schema:name Institute of Mathematics, National Academy of Sciences, Minsk, Belarus
87 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...