Parametric properties of irreducibility sets of linear differential systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-08

AUTHORS

N. A. Izobov, S. A. Mazanik

ABSTRACT

In the paper [Differ. Uravn., 2007, vol. 43, no. 2, pp. 191–202], we defined the noncoinciding irreducibility sets N2(a, σ) and N3(a, σ), σ ∈ (0, 2a], of all n-dimensional linear differential systems with piecewise continuous coefficient matrices A(t) bounded on the half-line [0,+∞) with norms ||A(t)|| ≤ a < +∞ for each of which there exists a linear differential system that cannot be reduced to it by Lyapunov transformations and whose coefficient matrix B(t) satisfies the condition ||B(t) - A(t)|| ≤ const × e−σt, t ≥ 0, or the more general condition that the Lyapunov exponent of the difference B(t) - A(t) does not exceed -σ, respectively. In the present paper, we study the properties of irreducibility sets treated as functions of the parameters σ and a. More... »

PAGES

973-983

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266115080017

DOI

http://dx.doi.org/10.1134/s0012266115080017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1002407862


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1117", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Public Health and Health Services", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarusian State University", 
          "id": "https://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Institute of Mathematics, National Academy of Sciences, Minsk, Belarus", 
            "Belarus Belarusian State University, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Izobov", 
        "givenName": "N. A.", 
        "id": "sg:person.012702260047.53", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarusian State University", 
          "id": "https://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Institute of Mathematics, National Academy of Sciences, Minsk, Belarus", 
            "Belarus Belarusian State University, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mazanik", 
        "givenName": "S. A.", 
        "id": "sg:person.010206654532.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206654532.41"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s001226610803004x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013238863", 
          "https://doi.org/10.1134/s001226610803004x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266111110036", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018160309", 
          "https://doi.org/10.1134/s0012266111110036"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266107020073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048220459", 
          "https://doi.org/10.1134/s0012266107020073"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2015-08", 
    "datePublishedReg": "2015-08-01", 
    "description": "In the paper [Differ. Uravn., 2007, vol. 43, no. 2, pp. 191\u2013202], we defined the noncoinciding irreducibility sets N2(a, \u03c3) and N3(a, \u03c3), \u03c3 \u2208 (0, 2a], of all n-dimensional linear differential systems with piecewise continuous coefficient matrices A(t) bounded on the half-line [0,+\u221e) with norms ||A(t)|| \u2264 a < +\u221e for each of which there exists a linear differential system that cannot be reduced to it by Lyapunov transformations and whose coefficient matrix B(t) satisfies the condition ||B(t) - A(t)|| \u2264 const \u00d7 e\u2212\u03c3t, t \u2265 0, or the more general condition that the Lyapunov exponent of the difference B(t) - A(t) does not exceed -\u03c3, respectively. In the present paper, we study the properties of irreducibility sets treated as functions of the parameters \u03c3 and a.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266115080017", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "Parametric properties of irreducibility sets of linear differential systems", 
    "pagination": "973-983", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "0b76b4928f505c92c3f51636945a2712a2e62ee83e37adef8ddabd9e240dbd89"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266115080017"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1002407862"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266115080017", 
      "https://app.dimensions.ai/details/publication/pub.1002407862"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266115080017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266115080017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266115080017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266115080017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266115080017'


 

This table displays all metadata directly associated to this object as RDF triples.

81 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266115080017 schema:about anzsrc-for:11
2 anzsrc-for:1117
3 schema:author N35625e1ead984e5c9f83b6a9ca95901d
4 schema:citation sg:pub.10.1134/s0012266107020073
5 sg:pub.10.1134/s001226610803004x
6 sg:pub.10.1134/s0012266111110036
7 schema:datePublished 2015-08
8 schema:datePublishedReg 2015-08-01
9 schema:description In the paper [Differ. Uravn., 2007, vol. 43, no. 2, pp. 191–202], we defined the noncoinciding irreducibility sets N2(a, σ) and N3(a, σ), σ ∈ (0, 2a], of all n-dimensional linear differential systems with piecewise continuous coefficient matrices A(t) bounded on the half-line [0,+∞) with norms ||A(t)|| ≤ a < +∞ for each of which there exists a linear differential system that cannot be reduced to it by Lyapunov transformations and whose coefficient matrix B(t) satisfies the condition ||B(t) - A(t)|| ≤ const × e−σt, t ≥ 0, or the more general condition that the Lyapunov exponent of the difference B(t) - A(t) does not exceed -σ, respectively. In the present paper, we study the properties of irreducibility sets treated as functions of the parameters σ and a.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N146c80dbf3d1480abf97f80213c3a391
14 N37411caa3f5e45848d8481b87c556d36
15 sg:journal.1135881
16 schema:name Parametric properties of irreducibility sets of linear differential systems
17 schema:pagination 973-983
18 schema:productId N1d6e3ff4bf1745bfa35b301d492f3bf8
19 Nabac950fc0614d85942048c551a153d4
20 Nbd0946dfe6d8446a94434e48d4e9459c
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002407862
22 https://doi.org/10.1134/s0012266115080017
23 schema:sdDatePublished 2019-04-10T16:39
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher N7fbe90b1c0fc4002bacb796ea5a5dcd8
26 schema:url http://link.springer.com/10.1134/S0012266115080017
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N146c80dbf3d1480abf97f80213c3a391 schema:volumeNumber 51
31 rdf:type schema:PublicationVolume
32 N1d6e3ff4bf1745bfa35b301d492f3bf8 schema:name doi
33 schema:value 10.1134/s0012266115080017
34 rdf:type schema:PropertyValue
35 N35625e1ead984e5c9f83b6a9ca95901d rdf:first sg:person.012702260047.53
36 rdf:rest N6ffabbdbf6d348e69b6779740ae299ed
37 N37411caa3f5e45848d8481b87c556d36 schema:issueNumber 8
38 rdf:type schema:PublicationIssue
39 N6ffabbdbf6d348e69b6779740ae299ed rdf:first sg:person.010206654532.41
40 rdf:rest rdf:nil
41 N7fbe90b1c0fc4002bacb796ea5a5dcd8 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 Nabac950fc0614d85942048c551a153d4 schema:name readcube_id
44 schema:value 0b76b4928f505c92c3f51636945a2712a2e62ee83e37adef8ddabd9e240dbd89
45 rdf:type schema:PropertyValue
46 Nbd0946dfe6d8446a94434e48d4e9459c schema:name dimensions_id
47 schema:value pub.1002407862
48 rdf:type schema:PropertyValue
49 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
50 schema:name Medical and Health Sciences
51 rdf:type schema:DefinedTerm
52 anzsrc-for:1117 schema:inDefinedTermSet anzsrc-for:
53 schema:name Public Health and Health Services
54 rdf:type schema:DefinedTerm
55 sg:journal.1135881 schema:issn 0012-2661
56 0374-0641
57 schema:name Differential Equations
58 rdf:type schema:Periodical
59 sg:person.010206654532.41 schema:affiliation https://www.grid.ac/institutes/grid.17678.3f
60 schema:familyName Mazanik
61 schema:givenName S. A.
62 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010206654532.41
63 rdf:type schema:Person
64 sg:person.012702260047.53 schema:affiliation https://www.grid.ac/institutes/grid.17678.3f
65 schema:familyName Izobov
66 schema:givenName N. A.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012702260047.53
68 rdf:type schema:Person
69 sg:pub.10.1134/s0012266107020073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048220459
70 https://doi.org/10.1134/s0012266107020073
71 rdf:type schema:CreativeWork
72 sg:pub.10.1134/s001226610803004x schema:sameAs https://app.dimensions.ai/details/publication/pub.1013238863
73 https://doi.org/10.1134/s001226610803004x
74 rdf:type schema:CreativeWork
75 sg:pub.10.1134/s0012266111110036 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018160309
76 https://doi.org/10.1134/s0012266111110036
77 rdf:type schema:CreativeWork
78 https://www.grid.ac/institutes/grid.17678.3f schema:alternateName Belarusian State University
79 schema:name Belarus Belarusian State University, Minsk, Belarus
80 Institute of Mathematics, National Academy of Sciences, Minsk, Belarus
81 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...