On the nature of bifurcations of solutions of the Riemann problem for the truncated Euler system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2015-06

AUTHORS

V. V. Palin, E. V. Radkevich

ABSTRACT

For the truncated Euler system, we study the problem of local reachability of points of the state space. We construct bifurcations of one-front solutions of the truncated Euler system into two-front solutions. The truncated Euler system is an example of a nonstrictly hyperbolic system of conservation laws for which there is no complete basis of eigenvectors on the critical manifold (of multiple eigenvalues) and there exists an associated vector. The constructed bifurcations of critical shock waves give an answer to the Lax problem on the behavior of a shock wave after it passes through the critical manifold in the phase space. More... »

PAGES

755-766

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266115060063

DOI

http://dx.doi.org/10.1134/s0012266115060063

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1039259373


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Palin", 
        "givenName": "V. V.", 
        "id": "sg:person.010367777627.70", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367777627.70"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Lomonosov Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Radkevich", 
        "givenName": "E. V.", 
        "id": "sg:person.010212007350.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2015-06", 
    "datePublishedReg": "2015-06-01", 
    "description": "For the truncated Euler system, we study the problem of local reachability of points of the state space. We construct bifurcations of one-front solutions of the truncated Euler system into two-front solutions. The truncated Euler system is an example of a nonstrictly hyperbolic system of conservation laws for which there is no complete basis of eigenvectors on the critical manifold (of multiple eigenvalues) and there exists an associated vector. The constructed bifurcations of critical shock waves give an answer to the Lax problem on the behavior of a shock wave after it passes through the critical manifold in the phase space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266115060063", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "51"
      }
    ], 
    "name": "On the nature of bifurcations of solutions of the Riemann problem for the truncated Euler system", 
    "pagination": "755-766", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "bb02a67638902d41b186176cfa7f55f27c85548b94acd6ad0bf4120784d760ba"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266115060063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1039259373"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266115060063", 
      "https://app.dimensions.ai/details/publication/pub.1039259373"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266115060063"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266115060063'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266115060063'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266115060063'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266115060063'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      20 PREDICATES      27 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266115060063 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Nd6f04aeea1a84477bcf4477193fee585
4 schema:datePublished 2015-06
5 schema:datePublishedReg 2015-06-01
6 schema:description For the truncated Euler system, we study the problem of local reachability of points of the state space. We construct bifurcations of one-front solutions of the truncated Euler system into two-front solutions. The truncated Euler system is an example of a nonstrictly hyperbolic system of conservation laws for which there is no complete basis of eigenvectors on the critical manifold (of multiple eigenvalues) and there exists an associated vector. The constructed bifurcations of critical shock waves give an answer to the Lax problem on the behavior of a shock wave after it passes through the critical manifold in the phase space.
7 schema:genre research_article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N00ddc82903a1428994d5b5ccc5836335
11 Ncd0c3942383141f79ede6d2585149a6c
12 sg:journal.1135881
13 schema:name On the nature of bifurcations of solutions of the Riemann problem for the truncated Euler system
14 schema:pagination 755-766
15 schema:productId N2c009988754146bbb4caaf5ef70307eb
16 Nb99da77106ca454fb26a3ef83aec5567
17 Nce82d86a82e448e59a6b36753ae9109c
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039259373
19 https://doi.org/10.1134/s0012266115060063
20 schema:sdDatePublished 2019-04-11T00:13
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N44c20074d05544b28c52b3b6f2b2a810
23 schema:url http://link.springer.com/10.1134/S0012266115060063
24 sgo:license sg:explorer/license/
25 sgo:sdDataset articles
26 rdf:type schema:ScholarlyArticle
27 N00ddc82903a1428994d5b5ccc5836335 schema:issueNumber 6
28 rdf:type schema:PublicationIssue
29 N2c009988754146bbb4caaf5ef70307eb schema:name readcube_id
30 schema:value bb02a67638902d41b186176cfa7f55f27c85548b94acd6ad0bf4120784d760ba
31 rdf:type schema:PropertyValue
32 N44c20074d05544b28c52b3b6f2b2a810 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N563823f1d4c2493083e13dde98005e1b rdf:first sg:person.010212007350.31
35 rdf:rest rdf:nil
36 Nb99da77106ca454fb26a3ef83aec5567 schema:name dimensions_id
37 schema:value pub.1039259373
38 rdf:type schema:PropertyValue
39 Ncd0c3942383141f79ede6d2585149a6c schema:volumeNumber 51
40 rdf:type schema:PublicationVolume
41 Nce82d86a82e448e59a6b36753ae9109c schema:name doi
42 schema:value 10.1134/s0012266115060063
43 rdf:type schema:PropertyValue
44 Nd6f04aeea1a84477bcf4477193fee585 rdf:first sg:person.010367777627.70
45 rdf:rest N563823f1d4c2493083e13dde98005e1b
46 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
47 schema:name Biological Sciences
48 rdf:type schema:DefinedTerm
49 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
50 schema:name Biochemistry and Cell Biology
51 rdf:type schema:DefinedTerm
52 sg:journal.1135881 schema:issn 0012-2661
53 0374-0641
54 schema:name Differential Equations
55 rdf:type schema:Periodical
56 sg:person.010212007350.31 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
57 schema:familyName Radkevich
58 schema:givenName E. V.
59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
60 rdf:type schema:Person
61 sg:person.010367777627.70 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
62 schema:familyName Palin
63 schema:givenName V. V.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010367777627.70
65 rdf:type schema:Person
66 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
67 schema:name Lomonosov Moscow State University, Moscow, Russia
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...