Ontology type: schema:ScholarlyArticle
2012-02
AUTHORS ABSTRACTWe consider an approximate solution of differential equations with initial and boundary conditions. To find a solution, we use asymptotic polynomials Qnf(x) of the first kind based on Chebyshev polynomials Tn(x) of the first kind and asymptotic polynomials Gnf(x) of the second kind based on Chebyshev polynomials Un(x) of the second kind. We suggest most efficient algorithms for each of these solutions. We find classes of functions for which the approximate solution converges to the exact one. The remainder is represented as an expansion in linear functionals {Lnf} in the first case and {Mnf} in the second case, whose decay rate depends on the properties of functions describing the differential equation. More... »
PAGES264-274
http://scigraph.springernature.com/pub.10.1134/s0012266112020103
DOIhttp://dx.doi.org/10.1134/s0012266112020103
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1015858903
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Mathematical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Pure Mathematics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Belarusian National Technical University, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.9427.8",
"name": [
"Belarusian National Technical University, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Gribkova",
"givenName": "V. P.",
"id": "sg:person.010255010143.72",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255010143.72"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Belarusian National Technical University, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.9427.8",
"name": [
"Belarusian National Technical University, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Kozlov",
"givenName": "S. M.",
"id": "sg:person.012577176224.55",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577176224.55"
],
"type": "Person"
}
],
"datePublished": "2012-02",
"datePublishedReg": "2012-02-01",
"description": "We consider an approximate solution of differential equations with initial and boundary conditions. To find a solution, we use asymptotic polynomials Qnf(x) of the first kind based on Chebyshev polynomials Tn(x) of the first kind and asymptotic polynomials Gnf(x) of the second kind based on Chebyshev polynomials Un(x) of the second kind. We suggest most efficient algorithms for each of these solutions. We find classes of functions for which the approximate solution converges to the exact one. The remainder is represented as an expansion in linear functionals {Lnf} in the first case and {Mnf} in the second case, whose decay rate depends on the properties of functions describing the differential equation.",
"genre": "article",
"id": "sg:pub.10.1134/s0012266112020103",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1135881",
"issn": [
"0012-2661",
"0374-0641"
],
"name": "Differential Equations",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "2",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "48"
}
],
"keywords": [
"differential equations",
"asymptotic polynomials",
"approximate solution",
"Chebyshev polynomials",
"first kind",
"second kind",
"approximate solution converges",
"class of functions",
"properties of functions",
"linear functionals",
"solution converges",
"polynomials",
"boundary conditions",
"equations",
"efficient algorithm",
"decay rate",
"solution",
"converges",
"functionals",
"second case",
"algorithm",
"kind",
"function",
"class",
"cases",
"properties",
"expansion",
"first case",
"conditions",
"MNF",
"use",
"rate",
"remainder"
],
"name": "Approximate solution of differential equations with the use of asymptotic polynomials",
"pagination": "264-274",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1015858903"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0012266112020103"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0012266112020103",
"https://app.dimensions.ai/details/publication/pub.1015858903"
],
"sdDataset": "articles",
"sdDatePublished": "2022-06-01T22:10",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220601/entities/gbq_results/article/article_582.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/s0012266112020103"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020103'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020103'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020103'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020103'
This table displays all metadata directly associated to this object as RDF triples.
98 TRIPLES
21 PREDICATES
59 URIs
51 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/s0012266112020103 | schema:about | anzsrc-for:01 |
2 | ″ | ″ | anzsrc-for:0101 |
3 | ″ | schema:author | N0d1df60f56f94629a31564c6d9a495bf |
4 | ″ | schema:datePublished | 2012-02 |
5 | ″ | schema:datePublishedReg | 2012-02-01 |
6 | ″ | schema:description | We consider an approximate solution of differential equations with initial and boundary conditions. To find a solution, we use asymptotic polynomials Qnf(x) of the first kind based on Chebyshev polynomials Tn(x) of the first kind and asymptotic polynomials Gnf(x) of the second kind based on Chebyshev polynomials Un(x) of the second kind. We suggest most efficient algorithms for each of these solutions. We find classes of functions for which the approximate solution converges to the exact one. The remainder is represented as an expansion in linear functionals {Lnf} in the first case and {Mnf} in the second case, whose decay rate depends on the properties of functions describing the differential equation. |
7 | ″ | schema:genre | article |
8 | ″ | schema:inLanguage | en |
9 | ″ | schema:isAccessibleForFree | false |
10 | ″ | schema:isPartOf | N374397dea7a1453f81ef9d5eb44fdfd2 |
11 | ″ | ″ | Naf91de3ca6054e9a8aa1a95917cce0f2 |
12 | ″ | ″ | sg:journal.1135881 |
13 | ″ | schema:keywords | Chebyshev polynomials |
14 | ″ | ″ | MNF |
15 | ″ | ″ | algorithm |
16 | ″ | ″ | approximate solution |
17 | ″ | ″ | approximate solution converges |
18 | ″ | ″ | asymptotic polynomials |
19 | ″ | ″ | boundary conditions |
20 | ″ | ″ | cases |
21 | ″ | ″ | class |
22 | ″ | ″ | class of functions |
23 | ″ | ″ | conditions |
24 | ″ | ″ | converges |
25 | ″ | ″ | decay rate |
26 | ″ | ″ | differential equations |
27 | ″ | ″ | efficient algorithm |
28 | ″ | ″ | equations |
29 | ″ | ″ | expansion |
30 | ″ | ″ | first case |
31 | ″ | ″ | first kind |
32 | ″ | ″ | function |
33 | ″ | ″ | functionals |
34 | ″ | ″ | kind |
35 | ″ | ″ | linear functionals |
36 | ″ | ″ | polynomials |
37 | ″ | ″ | properties |
38 | ″ | ″ | properties of functions |
39 | ″ | ″ | rate |
40 | ″ | ″ | remainder |
41 | ″ | ″ | second case |
42 | ″ | ″ | second kind |
43 | ″ | ″ | solution |
44 | ″ | ″ | solution converges |
45 | ″ | ″ | use |
46 | ″ | schema:name | Approximate solution of differential equations with the use of asymptotic polynomials |
47 | ″ | schema:pagination | 264-274 |
48 | ″ | schema:productId | N4f44a39323fc4893b54fae84dec3add4 |
49 | ″ | ″ | N8a2196ed36ce4460a3d4159a5d9ac0bc |
50 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1015858903 |
51 | ″ | ″ | https://doi.org/10.1134/s0012266112020103 |
52 | ″ | schema:sdDatePublished | 2022-06-01T22:10 |
53 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
54 | ″ | schema:sdPublisher | N99aac9bbf1ad40aab3601291a0cc08a3 |
55 | ″ | schema:url | https://doi.org/10.1134/s0012266112020103 |
56 | ″ | sgo:license | sg:explorer/license/ |
57 | ″ | sgo:sdDataset | articles |
58 | ″ | rdf:type | schema:ScholarlyArticle |
59 | N0d1df60f56f94629a31564c6d9a495bf | rdf:first | sg:person.010255010143.72 |
60 | ″ | rdf:rest | N30db530d58514befacb638cea0d68b87 |
61 | N30db530d58514befacb638cea0d68b87 | rdf:first | sg:person.012577176224.55 |
62 | ″ | rdf:rest | rdf:nil |
63 | N374397dea7a1453f81ef9d5eb44fdfd2 | schema:volumeNumber | 48 |
64 | ″ | rdf:type | schema:PublicationVolume |
65 | N4f44a39323fc4893b54fae84dec3add4 | schema:name | dimensions_id |
66 | ″ | schema:value | pub.1015858903 |
67 | ″ | rdf:type | schema:PropertyValue |
68 | N8a2196ed36ce4460a3d4159a5d9ac0bc | schema:name | doi |
69 | ″ | schema:value | 10.1134/s0012266112020103 |
70 | ″ | rdf:type | schema:PropertyValue |
71 | N99aac9bbf1ad40aab3601291a0cc08a3 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | Naf91de3ca6054e9a8aa1a95917cce0f2 | schema:issueNumber | 2 |
74 | ″ | rdf:type | schema:PublicationIssue |
75 | anzsrc-for:01 | schema:inDefinedTermSet | anzsrc-for: |
76 | ″ | schema:name | Mathematical Sciences |
77 | ″ | rdf:type | schema:DefinedTerm |
78 | anzsrc-for:0101 | schema:inDefinedTermSet | anzsrc-for: |
79 | ″ | schema:name | Pure Mathematics |
80 | ″ | rdf:type | schema:DefinedTerm |
81 | sg:journal.1135881 | schema:issn | 0012-2661 |
82 | ″ | ″ | 0374-0641 |
83 | ″ | schema:name | Differential Equations |
84 | ″ | schema:publisher | Pleiades Publishing |
85 | ″ | rdf:type | schema:Periodical |
86 | sg:person.010255010143.72 | schema:affiliation | grid-institutes:grid.9427.8 |
87 | ″ | schema:familyName | Gribkova |
88 | ″ | schema:givenName | V. P. |
89 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010255010143.72 |
90 | ″ | rdf:type | schema:Person |
91 | sg:person.012577176224.55 | schema:affiliation | grid-institutes:grid.9427.8 |
92 | ″ | schema:familyName | Kozlov |
93 | ″ | schema:givenName | S. M. |
94 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012577176224.55 |
95 | ″ | rdf:type | schema:Person |
96 | grid-institutes:grid.9427.8 | schema:alternateName | Belarusian National Technical University, Minsk, Belarus |
97 | ″ | schema:name | Belarusian National Technical University, Minsk, Belarus |
98 | ″ | rdf:type | schema:Organization |