Relaxation self-oscillations in neuron systems: III View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

The mathematical model considered here of a neuron system is a chain of an arbitrary number m ≥ 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.

PAGES

159-175

References to SciGraph publications

  • 2011-12. Relaxation self-oscillations in neuron systems: II in DIFFERENTIAL EQUATIONS
  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • Journal

    TITLE

    Differential Equations

    ISSUE

    2

    VOLUME

    48

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266112020012

    DOI

    http://dx.doi.org/10.1134/s0012266112020012

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012649782


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glyzin", 
            "givenName": "S. D.", 
            "id": "sg:person.011036165531.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.010035647473.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozov", 
            "givenName": "N. Kh.", 
            "id": "sg:person.016037077631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266111120019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009430572", 
              "https://doi.org/10.1134/s0012266111120019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02", 
        "datePublishedReg": "2012-02-01", 
        "description": "The mathematical model considered here of a neuron system is a chain of an arbitrary number m \u2265 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0012266112020012", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "0374-0641"
            ], 
            "name": "Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "name": "Relaxation self-oscillations in neuron systems: III", 
        "pagination": "159-175", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3c4400af4b2c294a381e17505277803d94d96ad750daa1d24f4920392c7b1b19"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266112020012"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012649782"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266112020012", 
          "https://app.dimensions.ai/details/publication/pub.1012649782"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000499.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0012266112020012"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266112020012 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Ned90fcc2d9a14d8eb4d9381f1b22eb97
    4 schema:citation sg:pub.10.1134/s0012266111070020
    5 sg:pub.10.1134/s0012266111120019
    6 schema:datePublished 2012-02
    7 schema:datePublishedReg 2012-02-01
    8 schema:description The mathematical model considered here of a neuron system is a chain of an arbitrary number m ≥ 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N0f6c500dec6640a39da85ff695fb0b85
    13 N330fb4337a1c4afdbf3c949231eeb3f6
    14 sg:journal.1135881
    15 schema:name Relaxation self-oscillations in neuron systems: III
    16 schema:pagination 159-175
    17 schema:productId N2fa57342eb79440898397b534a8ead49
    18 Na587855d5d8c4f2e9a123b757f33c76b
    19 Ndf04b6a4462740649d3a868082220f8b
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
    21 https://doi.org/10.1134/s0012266112020012
    22 schema:sdDatePublished 2019-04-10T22:29
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N446f813c46f84b9e98be21e58b3cc2ff
    25 schema:url http://link.springer.com/10.1134/S0012266112020012
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N0d04aad065864b83a599fa3af3879502 rdf:first sg:person.016037077631.01
    30 rdf:rest rdf:nil
    31 N0f6c500dec6640a39da85ff695fb0b85 schema:issueNumber 2
    32 rdf:type schema:PublicationIssue
    33 N2fa57342eb79440898397b534a8ead49 schema:name doi
    34 schema:value 10.1134/s0012266112020012
    35 rdf:type schema:PropertyValue
    36 N330fb4337a1c4afdbf3c949231eeb3f6 schema:volumeNumber 48
    37 rdf:type schema:PublicationVolume
    38 N446f813c46f84b9e98be21e58b3cc2ff schema:name Springer Nature - SN SciGraph project
    39 rdf:type schema:Organization
    40 N7e5d18fe2bdb46c99c9563dc451a376e rdf:first sg:person.010035647473.20
    41 rdf:rest N0d04aad065864b83a599fa3af3879502
    42 Na587855d5d8c4f2e9a123b757f33c76b schema:name dimensions_id
    43 schema:value pub.1012649782
    44 rdf:type schema:PropertyValue
    45 Ndf04b6a4462740649d3a868082220f8b schema:name readcube_id
    46 schema:value 3c4400af4b2c294a381e17505277803d94d96ad750daa1d24f4920392c7b1b19
    47 rdf:type schema:PropertyValue
    48 Ned90fcc2d9a14d8eb4d9381f1b22eb97 rdf:first sg:person.011036165531.45
    49 rdf:rest N7e5d18fe2bdb46c99c9563dc451a376e
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Applied Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1135881 schema:issn 0012-2661
    57 0374-0641
    58 schema:name Differential Equations
    59 rdf:type schema:Periodical
    60 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    61 schema:familyName Kolesov
    62 schema:givenName A. Yu.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
    64 rdf:type schema:Person
    65 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    66 schema:familyName Glyzin
    67 schema:givenName S. D.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
    69 rdf:type schema:Person
    70 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    71 schema:familyName Rozov
    72 schema:givenName N. Kh.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
    74 rdf:type schema:Person
    75 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    76 https://doi.org/10.1134/s0012266111070020
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    79 https://doi.org/10.1134/s0012266111120019
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    82 schema:name Moscow State University, Moscow, Russia
    83 Yaroslavl State University, Yaroslavl, Russia
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...