Relaxation self-oscillations in neuron systems: III View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2012-02

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

The mathematical model considered here of a neuron system is a chain of an arbitrary number m ≥ 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.

PAGES

159-175

References to SciGraph publications

  • 2011-12. Relaxation self-oscillations in neuron systems: II in DIFFERENTIAL EQUATIONS
  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • Journal

    TITLE

    Differential Equations

    ISSUE

    2

    VOLUME

    48

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266112020012

    DOI

    http://dx.doi.org/10.1134/s0012266112020012

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1012649782


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0102", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Applied Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glyzin", 
            "givenName": "S. D.", 
            "id": "sg:person.011036165531.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.010035647473.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozov", 
            "givenName": "N. Kh.", 
            "id": "sg:person.016037077631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266111120019", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009430572", 
              "https://doi.org/10.1134/s0012266111120019"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2012-02", 
        "datePublishedReg": "2012-02-01", 
        "description": "The mathematical model considered here of a neuron system is a chain of an arbitrary number m \u2265 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0012266112020012", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "0374-0641"
            ], 
            "name": "Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "48"
          }
        ], 
        "name": "Relaxation self-oscillations in neuron systems: III", 
        "pagination": "159-175", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3c4400af4b2c294a381e17505277803d94d96ad750daa1d24f4920392c7b1b19"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266112020012"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1012649782"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266112020012", 
          "https://app.dimensions.ai/details/publication/pub.1012649782"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T22:29", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000499.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0012266112020012"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266112020012'


     

    This table displays all metadata directly associated to this object as RDF triples.

    84 TRIPLES      21 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266112020012 schema:about anzsrc-for:01
    2 anzsrc-for:0102
    3 schema:author Nf2e972d72e1c444db0676cd4fbf19ec8
    4 schema:citation sg:pub.10.1134/s0012266111070020
    5 sg:pub.10.1134/s0012266111120019
    6 schema:datePublished 2012-02
    7 schema:datePublishedReg 2012-02-01
    8 schema:description The mathematical model considered here of a neuron system is a chain of an arbitrary number m ≥ 2 of diffusion-coupled singularly perturbed nonlinear delay differential equations with Neumann-type conditions at the endpoints. We study the existence, asymptotic behavior, and stability of relaxation periodic solutions of this system.
    9 schema:genre research_article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N1987cab02b0e403c8d53850ba42bbbe4
    13 N53866a8891b9458a82b4b2869da70ec2
    14 sg:journal.1135881
    15 schema:name Relaxation self-oscillations in neuron systems: III
    16 schema:pagination 159-175
    17 schema:productId N2ac9f403a3c747e791a6030970a0841f
    18 N7ceeb9cf3f3c4d29acea783806379043
    19 Ned6a799eea944970a3ce184f2c471b5d
    20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012649782
    21 https://doi.org/10.1134/s0012266112020012
    22 schema:sdDatePublished 2019-04-10T22:29
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N0d513071494a4708aa913b00b752637d
    25 schema:url http://link.springer.com/10.1134/S0012266112020012
    26 sgo:license sg:explorer/license/
    27 sgo:sdDataset articles
    28 rdf:type schema:ScholarlyArticle
    29 N0314ca9ed3dc48668a908ac71d69bf55 rdf:first sg:person.010035647473.20
    30 rdf:rest Nf419e474276e4751ac25654121a815c4
    31 N0d513071494a4708aa913b00b752637d schema:name Springer Nature - SN SciGraph project
    32 rdf:type schema:Organization
    33 N1987cab02b0e403c8d53850ba42bbbe4 schema:issueNumber 2
    34 rdf:type schema:PublicationIssue
    35 N2ac9f403a3c747e791a6030970a0841f schema:name doi
    36 schema:value 10.1134/s0012266112020012
    37 rdf:type schema:PropertyValue
    38 N53866a8891b9458a82b4b2869da70ec2 schema:volumeNumber 48
    39 rdf:type schema:PublicationVolume
    40 N7ceeb9cf3f3c4d29acea783806379043 schema:name readcube_id
    41 schema:value 3c4400af4b2c294a381e17505277803d94d96ad750daa1d24f4920392c7b1b19
    42 rdf:type schema:PropertyValue
    43 Ned6a799eea944970a3ce184f2c471b5d schema:name dimensions_id
    44 schema:value pub.1012649782
    45 rdf:type schema:PropertyValue
    46 Nf2e972d72e1c444db0676cd4fbf19ec8 rdf:first sg:person.011036165531.45
    47 rdf:rest N0314ca9ed3dc48668a908ac71d69bf55
    48 Nf419e474276e4751ac25654121a815c4 rdf:first sg:person.016037077631.01
    49 rdf:rest rdf:nil
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0102 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Applied Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1135881 schema:issn 0012-2661
    57 0374-0641
    58 schema:name Differential Equations
    59 rdf:type schema:Periodical
    60 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    61 schema:familyName Kolesov
    62 schema:givenName A. Yu.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
    64 rdf:type schema:Person
    65 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    66 schema:familyName Glyzin
    67 schema:givenName S. D.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
    69 rdf:type schema:Person
    70 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    71 schema:familyName Rozov
    72 schema:givenName N. Kh.
    73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
    74 rdf:type schema:Person
    75 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    76 https://doi.org/10.1134/s0012266111070020
    77 rdf:type schema:CreativeWork
    78 sg:pub.10.1134/s0012266111120019 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    79 https://doi.org/10.1134/s0012266111120019
    80 rdf:type schema:CreativeWork
    81 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    82 schema:name Moscow State University, Moscow, Russia
    83 Yaroslavl State University, Yaroslavl, Russia
    84 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...