Relaxation self-oscillations in neuron systems: II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.

PAGES

1697-1713

References to SciGraph publications

  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • Journal

    TITLE

    Differential Equations

    ISSUE

    12

    VOLUME

    47

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266111120019

    DOI

    http://dx.doi.org/10.1134/s0012266111120019

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009430572


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glyzin", 
            "givenName": "S. D.", 
            "id": "sg:person.011036165531.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.010035647473.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozov", 
            "givenName": "N. Kh.", 
            "id": "sg:person.016037077631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0012266111120019", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "0374-0641"
            ], 
            "name": "Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Relaxation self-oscillations in neuron systems: II", 
        "pagination": "1697-1713", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2ceca4c9e4613c37cced8bcfb92c298813f24f8c908b91941384cc7df3a87a00"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266111120019"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009430572"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266111120019", 
          "https://app.dimensions.ai/details/publication/pub.1009430572"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0012266111120019"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'


     

    This table displays all metadata directly associated to this object as RDF triples.

    72 TRIPLES      20 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266111120019 schema:author N5af448411fd248fb9f08b61721f5eee4
    2 schema:citation sg:pub.10.1134/s0012266111070020
    3 schema:datePublished 2011-12
    4 schema:datePublishedReg 2011-12-01
    5 schema:description A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.
    6 schema:genre research_article
    7 schema:inLanguage en
    8 schema:isAccessibleForFree false
    9 schema:isPartOf N0193918aaa974ed798e3944f3225542b
    10 Nf3a536b7dd2349799c7c06601241f9a4
    11 sg:journal.1135881
    12 schema:name Relaxation self-oscillations in neuron systems: II
    13 schema:pagination 1697-1713
    14 schema:productId N291bf587e8874ae98e212e35a7c08b73
    15 N411aa55e3a674bfea1826797ab4552ad
    16 Nb69dd92cee4c4a23b092cb97079baece
    17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    18 https://doi.org/10.1134/s0012266111120019
    19 schema:sdDatePublished 2019-04-10T16:39
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher Na4880870af4346f7a49a608e027d387d
    22 schema:url http://link.springer.com/10.1134/S0012266111120019
    23 sgo:license sg:explorer/license/
    24 sgo:sdDataset articles
    25 rdf:type schema:ScholarlyArticle
    26 N0193918aaa974ed798e3944f3225542b schema:issueNumber 12
    27 rdf:type schema:PublicationIssue
    28 N14a95d0fb944484684166aaa4c3373aa rdf:first sg:person.010035647473.20
    29 rdf:rest N33e5db42c09f42b2810fb3ea0fc93567
    30 N291bf587e8874ae98e212e35a7c08b73 schema:name doi
    31 schema:value 10.1134/s0012266111120019
    32 rdf:type schema:PropertyValue
    33 N33e5db42c09f42b2810fb3ea0fc93567 rdf:first sg:person.016037077631.01
    34 rdf:rest rdf:nil
    35 N411aa55e3a674bfea1826797ab4552ad schema:name readcube_id
    36 schema:value 2ceca4c9e4613c37cced8bcfb92c298813f24f8c908b91941384cc7df3a87a00
    37 rdf:type schema:PropertyValue
    38 N5af448411fd248fb9f08b61721f5eee4 rdf:first sg:person.011036165531.45
    39 rdf:rest N14a95d0fb944484684166aaa4c3373aa
    40 Na4880870af4346f7a49a608e027d387d schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 Nb69dd92cee4c4a23b092cb97079baece schema:name dimensions_id
    43 schema:value pub.1009430572
    44 rdf:type schema:PropertyValue
    45 Nf3a536b7dd2349799c7c06601241f9a4 schema:volumeNumber 47
    46 rdf:type schema:PublicationVolume
    47 sg:journal.1135881 schema:issn 0012-2661
    48 0374-0641
    49 schema:name Differential Equations
    50 rdf:type schema:Periodical
    51 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    52 schema:familyName Kolesov
    53 schema:givenName A. Yu.
    54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
    55 rdf:type schema:Person
    56 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    57 schema:familyName Glyzin
    58 schema:givenName S. D.
    59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
    60 rdf:type schema:Person
    61 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    62 schema:familyName Rozov
    63 schema:givenName N. Kh.
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
    65 rdf:type schema:Person
    66 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    67 https://doi.org/10.1134/s0012266111070020
    68 rdf:type schema:CreativeWork
    69 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    70 schema:name Moscow State University, Moscow, Russia
    71 Yaroslavl State University, Yaroslavl, Russia
    72 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...