Relaxation self-oscillations in neuron systems: II View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-12

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.

PAGES

1697-1713

References to SciGraph publications

  • 2011-07. Relaxation self-oscillations in neuron systems: I in DIFFERENTIAL EQUATIONS
  • Journal

    TITLE

    Differential Equations

    ISSUE

    12

    VOLUME

    47

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266111120019

    DOI

    http://dx.doi.org/10.1134/s0012266111120019

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1009430572


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Glyzin", 
            "givenName": "S. D.", 
            "id": "sg:person.011036165531.45", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Kolesov", 
            "givenName": "A. Yu.", 
            "id": "sg:person.010035647473.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Yaroslavl State University, Yaroslavl, Russia", 
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rozov", 
            "givenName": "N. Kh.", 
            "id": "sg:person.016037077631.01", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s0012266111070020", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1020633032", 
              "https://doi.org/10.1134/s0012266111070020"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2011-12", 
        "datePublishedReg": "2011-12-01", 
        "description": "A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0012266111120019", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "0374-0641"
            ], 
            "name": "Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "12", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "47"
          }
        ], 
        "name": "Relaxation self-oscillations in neuron systems: II", 
        "pagination": "1697-1713", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "2ceca4c9e4613c37cced8bcfb92c298813f24f8c908b91941384cc7df3a87a00"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266111120019"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1009430572"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266111120019", 
          "https://app.dimensions.ai/details/publication/pub.1009430572"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T16:39", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0012266111120019"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266111120019'


     

    This table displays all metadata directly associated to this object as RDF triples.

    72 TRIPLES      20 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266111120019 schema:author Neba30607a1fa468da4684f20d3ac2e38
    2 schema:citation sg:pub.10.1134/s0012266111070020
    3 schema:datePublished 2011-12
    4 schema:datePublishedReg 2011-12-01
    5 schema:description A singularly perturbed system of nonlinear delay differential equations that models the diffusion interaction of two neurons is considered. We study the existence and stability of relaxation periodic motions in this system.
    6 schema:genre research_article
    7 schema:inLanguage en
    8 schema:isAccessibleForFree false
    9 schema:isPartOf N1c37d5c7da3347778e198b74635b8b71
    10 N523ddc1989ca4532955dd6f2a5c28f56
    11 sg:journal.1135881
    12 schema:name Relaxation self-oscillations in neuron systems: II
    13 schema:pagination 1697-1713
    14 schema:productId N5f3ef87518ed4c4ab9e89dc1b2a5c5ef
    15 N8a9c2b0f298948a7bf074339d76089df
    16 Ne7623252fdf94bdeb1700f77ff05f93e
    17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009430572
    18 https://doi.org/10.1134/s0012266111120019
    19 schema:sdDatePublished 2019-04-10T16:39
    20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    21 schema:sdPublisher N09255d7ad2ad4604b76ea1b0b7c7bde1
    22 schema:url http://link.springer.com/10.1134/S0012266111120019
    23 sgo:license sg:explorer/license/
    24 sgo:sdDataset articles
    25 rdf:type schema:ScholarlyArticle
    26 N09255d7ad2ad4604b76ea1b0b7c7bde1 schema:name Springer Nature - SN SciGraph project
    27 rdf:type schema:Organization
    28 N1c37d5c7da3347778e198b74635b8b71 schema:issueNumber 12
    29 rdf:type schema:PublicationIssue
    30 N523ddc1989ca4532955dd6f2a5c28f56 schema:volumeNumber 47
    31 rdf:type schema:PublicationVolume
    32 N5f3ef87518ed4c4ab9e89dc1b2a5c5ef schema:name dimensions_id
    33 schema:value pub.1009430572
    34 rdf:type schema:PropertyValue
    35 N76c7aa4cda964bbea99e4e2377b5dbc5 rdf:first sg:person.016037077631.01
    36 rdf:rest rdf:nil
    37 N8a9c2b0f298948a7bf074339d76089df schema:name doi
    38 schema:value 10.1134/s0012266111120019
    39 rdf:type schema:PropertyValue
    40 Ne48dd8fcd8084545974a06a4c673c84a rdf:first sg:person.010035647473.20
    41 rdf:rest N76c7aa4cda964bbea99e4e2377b5dbc5
    42 Ne7623252fdf94bdeb1700f77ff05f93e schema:name readcube_id
    43 schema:value 2ceca4c9e4613c37cced8bcfb92c298813f24f8c908b91941384cc7df3a87a00
    44 rdf:type schema:PropertyValue
    45 Neba30607a1fa468da4684f20d3ac2e38 rdf:first sg:person.011036165531.45
    46 rdf:rest Ne48dd8fcd8084545974a06a4c673c84a
    47 sg:journal.1135881 schema:issn 0012-2661
    48 0374-0641
    49 schema:name Differential Equations
    50 rdf:type schema:Periodical
    51 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    52 schema:familyName Kolesov
    53 schema:givenName A. Yu.
    54 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
    55 rdf:type schema:Person
    56 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    57 schema:familyName Glyzin
    58 schema:givenName S. D.
    59 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
    60 rdf:type schema:Person
    61 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    62 schema:familyName Rozov
    63 schema:givenName N. Kh.
    64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
    65 rdf:type schema:Person
    66 sg:pub.10.1134/s0012266111070020 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
    67 https://doi.org/10.1134/s0012266111070020
    68 rdf:type schema:CreativeWork
    69 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    70 schema:name Moscow State University, Moscow, Russia
    71 Yaroslavl State University, Yaroslavl, Russia
    72 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...