Relaxation self-oscillations in neuron systems: I View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.

PAGES

927

Journal

TITLE

Differential Equations

ISSUE

7

VOLUME

47

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266111070020

DOI

http://dx.doi.org/10.1134/s0012266111070020

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020633032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glyzin", 
        "givenName": "S. D.", 
        "id": "sg:person.011036165531.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolesov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.010035647473.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozov", 
        "givenName": "N. Kh.", 
        "id": "sg:person.016037077631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s0012266111070020", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Relaxation self-oscillations in neuron systems: I", 
    "pagination": "927", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6250029f98eb4a8e7b4dcf66edec4bc25a733ed919156fca6726d8c914c9c018"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266111070020"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020633032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266111070020", 
      "https://app.dimensions.ai/details/publication/pub.1020633032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266111070020"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      19 PREDICATES      25 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266111070020 schema:author Nacba2cbded8c4cb197ca9a2fb9830bad
2 schema:datePublished 2011-07
3 schema:datePublishedReg 2011-07-01
4 schema:description We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.
5 schema:genre non_research_article
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N52c1a31aa1fd4d96907dabcb92badcde
9 N88cd91e79d4745d7a6186764665cf47f
10 sg:journal.1135881
11 schema:name Relaxation self-oscillations in neuron systems: I
12 schema:pagination 927
13 schema:productId Ndc4511fc24f0416e9f1fee2ac10e34e5
14 Nf003620a034e4a03b8226ba216657869
15 Nf5c4d40db4034813b6d684ae819f1c48
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
17 https://doi.org/10.1134/s0012266111070020
18 schema:sdDatePublished 2019-04-10T23:21
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher Nfea87ba8c7db4a99bbf7b0ee2b0e8d6e
21 schema:url http://link.springer.com/10.1134/S0012266111070020
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N52c1a31aa1fd4d96907dabcb92badcde schema:issueNumber 7
26 rdf:type schema:PublicationIssue
27 N67e6beb6c42441528597cc6fb77d99a6 rdf:first sg:person.010035647473.20
28 rdf:rest N8fc32d5d71054d02b4b0cb490e6b4b32
29 N88cd91e79d4745d7a6186764665cf47f schema:volumeNumber 47
30 rdf:type schema:PublicationVolume
31 N8fc32d5d71054d02b4b0cb490e6b4b32 rdf:first sg:person.016037077631.01
32 rdf:rest rdf:nil
33 Nacba2cbded8c4cb197ca9a2fb9830bad rdf:first sg:person.011036165531.45
34 rdf:rest N67e6beb6c42441528597cc6fb77d99a6
35 Ndc4511fc24f0416e9f1fee2ac10e34e5 schema:name dimensions_id
36 schema:value pub.1020633032
37 rdf:type schema:PropertyValue
38 Nf003620a034e4a03b8226ba216657869 schema:name readcube_id
39 schema:value 6250029f98eb4a8e7b4dcf66edec4bc25a733ed919156fca6726d8c914c9c018
40 rdf:type schema:PropertyValue
41 Nf5c4d40db4034813b6d684ae819f1c48 schema:name doi
42 schema:value 10.1134/s0012266111070020
43 rdf:type schema:PropertyValue
44 Nfea87ba8c7db4a99bbf7b0ee2b0e8d6e schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 sg:journal.1135881 schema:issn 0012-2661
47 0374-0641
48 schema:name Differential Equations
49 rdf:type schema:Periodical
50 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
51 schema:familyName Kolesov
52 schema:givenName A. Yu.
53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
54 rdf:type schema:Person
55 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
56 schema:familyName Glyzin
57 schema:givenName S. D.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
59 rdf:type schema:Person
60 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
61 schema:familyName Rozov
62 schema:givenName N. Kh.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
66 schema:name Moscow State University, Moscow, Russia
67 Yaroslavl State University, Yaroslavl, Russia
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...