Relaxation self-oscillations in neuron systems: I View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-07

AUTHORS

S. D. Glyzin, A. Yu. Kolesov, N. Kh. Rozov

ABSTRACT

We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.

PAGES

927

Journal

TITLE

Differential Equations

ISSUE

7

VOLUME

47

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266111070020

DOI

http://dx.doi.org/10.1134/s0012266111070020

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1020633032


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glyzin", 
        "givenName": "S. D.", 
        "id": "sg:person.011036165531.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolesov", 
        "givenName": "A. Yu.", 
        "id": "sg:person.010035647473.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Yaroslavl State University, Yaroslavl, Russia", 
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rozov", 
        "givenName": "N. Kh.", 
        "id": "sg:person.016037077631.01", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2011-07", 
    "datePublishedReg": "2011-07-01", 
    "description": "We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.", 
    "genre": "non_research_article", 
    "id": "sg:pub.10.1134/s0012266111070020", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Relaxation self-oscillations in neuron systems: I", 
    "pagination": "927", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6250029f98eb4a8e7b4dcf66edec4bc25a733ed919156fca6726d8c914c9c018"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266111070020"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1020633032"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266111070020", 
      "https://app.dimensions.ai/details/publication/pub.1020633032"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:21", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266111070020"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266111070020'


 

This table displays all metadata directly associated to this object as RDF triples.

68 TRIPLES      19 PREDICATES      25 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266111070020 schema:author Nde62885c0e604d9f9813d6f80bb1209e
2 schema:datePublished 2011-07
3 schema:datePublishedReg 2011-07-01
4 schema:description We consider a scalar singularly perturbed nonlinear delay differential-difference equation modeling an individual neuron. We study the existence, asymptotics, and stability of its relaxation cycle.
5 schema:genre non_research_article
6 schema:inLanguage en
7 schema:isAccessibleForFree false
8 schema:isPartOf N0811dfad0c7a41b398a9210919fbbc9c
9 Na2c44f45aa6340ad9580cf5b242e4e74
10 sg:journal.1135881
11 schema:name Relaxation self-oscillations in neuron systems: I
12 schema:pagination 927
13 schema:productId N63e1e91a9aeb4a958993de7ec8cfe415
14 N99888ae69e5142a8bac11de219723eb4
15 N9fbb454c11b54e05b7df1c95e0fcbf32
16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020633032
17 https://doi.org/10.1134/s0012266111070020
18 schema:sdDatePublished 2019-04-10T23:21
19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
20 schema:sdPublisher Nbe6af8ca527043f1981931157f550a0f
21 schema:url http://link.springer.com/10.1134/S0012266111070020
22 sgo:license sg:explorer/license/
23 sgo:sdDataset articles
24 rdf:type schema:ScholarlyArticle
25 N0811dfad0c7a41b398a9210919fbbc9c schema:issueNumber 7
26 rdf:type schema:PublicationIssue
27 N63e1e91a9aeb4a958993de7ec8cfe415 schema:name dimensions_id
28 schema:value pub.1020633032
29 rdf:type schema:PropertyValue
30 N71eabd4396f347058789ddc8c1f3381d rdf:first sg:person.016037077631.01
31 rdf:rest rdf:nil
32 N939b94f969a844d295908669dd80bb1b rdf:first sg:person.010035647473.20
33 rdf:rest N71eabd4396f347058789ddc8c1f3381d
34 N99888ae69e5142a8bac11de219723eb4 schema:name doi
35 schema:value 10.1134/s0012266111070020
36 rdf:type schema:PropertyValue
37 N9fbb454c11b54e05b7df1c95e0fcbf32 schema:name readcube_id
38 schema:value 6250029f98eb4a8e7b4dcf66edec4bc25a733ed919156fca6726d8c914c9c018
39 rdf:type schema:PropertyValue
40 Na2c44f45aa6340ad9580cf5b242e4e74 schema:volumeNumber 47
41 rdf:type schema:PublicationVolume
42 Nbe6af8ca527043f1981931157f550a0f schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nde62885c0e604d9f9813d6f80bb1209e rdf:first sg:person.011036165531.45
45 rdf:rest N939b94f969a844d295908669dd80bb1b
46 sg:journal.1135881 schema:issn 0012-2661
47 0374-0641
48 schema:name Differential Equations
49 rdf:type schema:Periodical
50 sg:person.010035647473.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
51 schema:familyName Kolesov
52 schema:givenName A. Yu.
53 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010035647473.20
54 rdf:type schema:Person
55 sg:person.011036165531.45 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
56 schema:familyName Glyzin
57 schema:givenName S. D.
58 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011036165531.45
59 rdf:type schema:Person
60 sg:person.016037077631.01 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
61 schema:familyName Rozov
62 schema:givenName N. Kh.
63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016037077631.01
64 rdf:type schema:Person
65 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
66 schema:name Moscow State University, Moscow, Russia
67 Yaroslavl State University, Yaroslavl, Russia
68 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...