articles
We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space.
1731-1736
2019-04-11T00:13
research_article
false
en
https://scigraph.springernature.com/explorer/license/
http://link.springer.com/10.1134/S0012266110120062
Some remarks on Boolean control systems: Controllability domains and realization theory
2010-12
2010-12-01
Vasil’ev
O. O.
Vainshtein
F. S.
N. I.
Osetinskii
Texas A&M University – Texarkana
Texas A&M University-Texarkana, Texarkana, Texas, USA
Russian State University of Oil and Gas, Moscow, Russia
10.1134/s0012266110120062
doi
Mathematical Sciences
Springer Nature - SN SciGraph project
67462c544d4f5e6c13723a04a3005be15ed70d5dc519c09ecb382d840c3bc88b
readcube_id
dimensions_id
pub.1021675975
Pure Mathematics
12
0374-0641
0012-2661
Differential Equations
46