Some remarks on Boolean control systems: Controllability domains and realization theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

O. O. Vasil’ev, N. I. Osetinskii, F. S. Vainshtein

ABSTRACT

We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space. More... »

PAGES

1731-1736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266110120062

DOI

http://dx.doi.org/10.1134/s0012266110120062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021675975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "O. O.", 
        "id": "sg:person.014155045257.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osetinskii", 
        "givenName": "N. I.", 
        "id": "sg:person.014005733555.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vainshtein", 
        "givenName": "F. S.", 
        "id": "sg:person.013530733507.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002400330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002400330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:amhu.0000034362.97008.c6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014985259", 
          "https://doi.org/10.1023/b:amhu.0000034362.97008.c6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800040206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019713018007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255984", 
          "https://doi.org/10.1023/a:1019713018007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226610912009x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300756", 
          "https://doi.org/10.1134/s001226610912009x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226610912009x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300756", 
          "https://doi.org/10.1134/s001226610912009x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266108110037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496748", 
          "https://doi.org/10.1134/s0012266108110037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266110120062", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Some remarks on Boolean control systems: Controllability domains and realization theory", 
    "pagination": "1731-1736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67462c544d4f5e6c13723a04a3005be15ed70d5dc519c09ecb382d840c3bc88b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266110120062"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021675975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266110120062", 
      "https://app.dimensions.ai/details/publication/pub.1021675975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266110120062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266110120062 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N84ad06dc6f9a4536962b903d4ab67bc3
4 schema:citation sg:pub.10.1023/a:1019713018007
5 sg:pub.10.1023/b:amhu.0000034362.97008.c6
6 sg:pub.10.1134/s0012266108110037
7 sg:pub.10.1134/s001226610912009x
8 https://doi.org/10.1002/nav.3800040206
9 https://doi.org/10.1016/0005-1098(74)90039-9
10 schema:datePublished 2010-12
11 schema:datePublishedReg 2010-12-01
12 schema:description We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N75db5ea147d94bd9acfd9d41653553f6
17 Ne85444a4a45c4df3bb9169ad08db2a2c
18 sg:journal.1135881
19 schema:name Some remarks on Boolean control systems: Controllability domains and realization theory
20 schema:pagination 1731-1736
21 schema:productId N53e54baacf2d430b905bc4463364b498
22 N85668760d3164ae7971f3f4ffcffbf3d
23 Nf7541d1201b24082bcb775dd643fc65e
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021675975
25 https://doi.org/10.1134/s0012266110120062
26 schema:sdDatePublished 2019-04-11T00:13
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N1e1e4fd0738d4b5b9315e8ca87ed379e
29 schema:url http://link.springer.com/10.1134/S0012266110120062
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0f15c31b576642c3a6a669334bb3d3ca rdf:first sg:person.013530733507.15
34 rdf:rest rdf:nil
35 N1e1e4fd0738d4b5b9315e8ca87ed379e schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N53e54baacf2d430b905bc4463364b498 schema:name doi
38 schema:value 10.1134/s0012266110120062
39 rdf:type schema:PropertyValue
40 N7304c831ca4c489bb9c96a67e89f1ce7 rdf:first sg:person.014005733555.00
41 rdf:rest N0f15c31b576642c3a6a669334bb3d3ca
42 N75db5ea147d94bd9acfd9d41653553f6 schema:volumeNumber 46
43 rdf:type schema:PublicationVolume
44 N84ad06dc6f9a4536962b903d4ab67bc3 rdf:first sg:person.014155045257.38
45 rdf:rest N7304c831ca4c489bb9c96a67e89f1ce7
46 N85668760d3164ae7971f3f4ffcffbf3d schema:name dimensions_id
47 schema:value pub.1021675975
48 rdf:type schema:PropertyValue
49 Ne85444a4a45c4df3bb9169ad08db2a2c schema:issueNumber 12
50 rdf:type schema:PublicationIssue
51 Nf7541d1201b24082bcb775dd643fc65e schema:name readcube_id
52 schema:value 67462c544d4f5e6c13723a04a3005be15ed70d5dc519c09ecb382d840c3bc88b
53 rdf:type schema:PropertyValue
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1135881 schema:issn 0012-2661
61 0374-0641
62 schema:name Differential Equations
63 rdf:type schema:Periodical
64 sg:person.013530733507.15 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
65 schema:familyName Vainshtein
66 schema:givenName F. S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15
68 rdf:type schema:Person
69 sg:person.014005733555.00 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
70 schema:familyName Osetinskii
71 schema:givenName N. I.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00
73 rdf:type schema:Person
74 sg:person.014155045257.38 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
75 schema:familyName Vasil’ev
76 schema:givenName O. O.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38
78 rdf:type schema:Person
79 sg:pub.10.1023/a:1019713018007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255984
80 https://doi.org/10.1023/a:1019713018007
81 rdf:type schema:CreativeWork
82 sg:pub.10.1023/b:amhu.0000034362.97008.c6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985259
83 https://doi.org/10.1023/b:amhu.0000034362.97008.c6
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0012266108110037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496748
86 https://doi.org/10.1134/s0012266108110037
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s001226610912009x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300756
89 https://doi.org/10.1134/s001226610912009x
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/nav.3800040206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359865
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0005-1098(74)90039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002400330
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
96 schema:name Russian State University of Oil and Gas, Moscow, Russia
97 Texas A&M University-Texarkana, Texarkana, Texas, USA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...