Some remarks on Boolean control systems: Controllability domains and realization theory View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-12

AUTHORS

O. O. Vasil’ev, N. I. Osetinskii, F. S. Vainshtein

ABSTRACT

We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space. More... »

PAGES

1731-1736

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266110120062

DOI

http://dx.doi.org/10.1134/s0012266110120062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1021675975


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "O. O.", 
        "id": "sg:person.014155045257.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osetinskii", 
        "givenName": "N. I.", 
        "id": "sg:person.014005733555.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Texas A&M University \u2013 Texarkana", 
          "id": "https://www.grid.ac/institutes/grid.264762.3", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Texas A&M University-Texarkana, Texarkana, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vainshtein", 
        "givenName": "F. S.", 
        "id": "sg:person.013530733507.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002400330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0005-1098(74)90039-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002400330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/b:amhu.0000034362.97008.c6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014985259", 
          "https://doi.org/10.1023/b:amhu.0000034362.97008.c6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nav.3800040206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1019713018007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044255984", 
          "https://doi.org/10.1023/a:1019713018007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226610912009x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300756", 
          "https://doi.org/10.1134/s001226610912009x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s001226610912009x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045300756", 
          "https://doi.org/10.1134/s001226610912009x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266108110037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496748", 
          "https://doi.org/10.1134/s0012266108110037"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-12", 
    "datePublishedReg": "2010-12-01", 
    "description": "We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266110120062", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "Some remarks on Boolean control systems: Controllability domains and realization theory", 
    "pagination": "1731-1736", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "67462c544d4f5e6c13723a04a3005be15ed70d5dc519c09ecb382d840c3bc88b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266110120062"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1021675975"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266110120062", 
      "https://app.dimensions.ai/details/publication/pub.1021675975"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T00:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266110120062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266110120062'


 

This table displays all metadata directly associated to this object as RDF triples.

98 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266110120062 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf7ab25efa81e4eb08edc7a14d185485d
4 schema:citation sg:pub.10.1023/a:1019713018007
5 sg:pub.10.1023/b:amhu.0000034362.97008.c6
6 sg:pub.10.1134/s0012266108110037
7 sg:pub.10.1134/s001226610912009x
8 https://doi.org/10.1002/nav.3800040206
9 https://doi.org/10.1016/0005-1098(74)90039-9
10 schema:datePublished 2010-12
11 schema:datePublishedReg 2010-12-01
12 schema:description We construct a theory of realizations and controllability domains for linear stationary systems in the category of finitely generated free semimodules over a Boolean semiring. We show that the classical realization theorems cannot be generalized to this case, and we prove some incomplete analogs of these theorems. We analyze the structure of controllability domains and the reachability and observability characteristics. In particular, we define a geometric object representing the reachability properties of a system, namely, the generalized reachability topology on the state space.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nccd7274baddf4c37b1fe94bff9eb12f6
17 Nd6953d9ec53c4ad1890d8e560ff3f984
18 sg:journal.1135881
19 schema:name Some remarks on Boolean control systems: Controllability domains and realization theory
20 schema:pagination 1731-1736
21 schema:productId N58859e35113241bb9370d3fbb6ac502e
22 N7ed7c1cbf25b41c3a5ec592ea73d6d55
23 Ncfd47a19188940fbbef368f816a36228
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021675975
25 https://doi.org/10.1134/s0012266110120062
26 schema:sdDatePublished 2019-04-11T00:13
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N0fb262ffb3ce4eb4a4bedf9777be50f0
29 schema:url http://link.springer.com/10.1134/S0012266110120062
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0fb262ffb3ce4eb4a4bedf9777be50f0 schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N56ed7248749d4fc993c63aaee8dbdbea rdf:first sg:person.013530733507.15
36 rdf:rest rdf:nil
37 N58859e35113241bb9370d3fbb6ac502e schema:name dimensions_id
38 schema:value pub.1021675975
39 rdf:type schema:PropertyValue
40 N7ed7c1cbf25b41c3a5ec592ea73d6d55 schema:name readcube_id
41 schema:value 67462c544d4f5e6c13723a04a3005be15ed70d5dc519c09ecb382d840c3bc88b
42 rdf:type schema:PropertyValue
43 Nccd7274baddf4c37b1fe94bff9eb12f6 schema:issueNumber 12
44 rdf:type schema:PublicationIssue
45 Ncfd47a19188940fbbef368f816a36228 schema:name doi
46 schema:value 10.1134/s0012266110120062
47 rdf:type schema:PropertyValue
48 Nd6953d9ec53c4ad1890d8e560ff3f984 schema:volumeNumber 46
49 rdf:type schema:PublicationVolume
50 Ne3ae81dc38e5469e9e7bc6791d243243 rdf:first sg:person.014005733555.00
51 rdf:rest N56ed7248749d4fc993c63aaee8dbdbea
52 Nf7ab25efa81e4eb08edc7a14d185485d rdf:first sg:person.014155045257.38
53 rdf:rest Ne3ae81dc38e5469e9e7bc6791d243243
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1135881 schema:issn 0012-2661
61 0374-0641
62 schema:name Differential Equations
63 rdf:type schema:Periodical
64 sg:person.013530733507.15 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
65 schema:familyName Vainshtein
66 schema:givenName F. S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15
68 rdf:type schema:Person
69 sg:person.014005733555.00 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
70 schema:familyName Osetinskii
71 schema:givenName N. I.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00
73 rdf:type schema:Person
74 sg:person.014155045257.38 schema:affiliation https://www.grid.ac/institutes/grid.264762.3
75 schema:familyName Vasil’ev
76 schema:givenName O. O.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38
78 rdf:type schema:Person
79 sg:pub.10.1023/a:1019713018007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044255984
80 https://doi.org/10.1023/a:1019713018007
81 rdf:type schema:CreativeWork
82 sg:pub.10.1023/b:amhu.0000034362.97008.c6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014985259
83 https://doi.org/10.1023/b:amhu.0000034362.97008.c6
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0012266108110037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496748
86 https://doi.org/10.1134/s0012266108110037
87 rdf:type schema:CreativeWork
88 sg:pub.10.1134/s001226610912009x schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300756
89 https://doi.org/10.1134/s001226610912009x
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/nav.3800040206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359865
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0005-1098(74)90039-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002400330
94 rdf:type schema:CreativeWork
95 https://www.grid.ac/institutes/grid.264762.3 schema:alternateName Texas A&M University – Texarkana
96 schema:name Russian State University of Oil and Gas, Moscow, Russia
97 Texas A&M University-Texarkana, Texarkana, Texas, USA
98 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...