A priori estimates and solvability of the third two-point boundary value problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2010-02

AUTHORS

A. N. Naimov, M. V. Bystretskii

ABSTRACT

We study a priori estimates and solvability of a nonlinear two-point boundary value problem for systems of second-order ordinary differential equations with leading positively homogeneous nonlinearity of order > 1 vanishing on a single surface. Assuming that an a priori estimate holds, we prove the invariance of the solvability of the problem under a continuous change of the leading nonlinear homogeneous terms and under arbitrary perturbations that do not affect the behavior of the leading nonlinear homogeneous terms at infinity. More... »

PAGES

284-288

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266110020138

DOI

http://dx.doi.org/10.1134/s0012266110020138

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051746590


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Vologda State Pedagogical University", 
          "id": "https://www.grid.ac/institutes/grid.445062.1", 
          "name": [
            "Vologda State Technical University, Vologda, Russia", 
            "Vologda State Pedagogical University, Vologda, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Naimov", 
        "givenName": "A. N.", 
        "id": "sg:person.011053050736.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053050736.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Vologda State Pedagogical University", 
          "id": "https://www.grid.ac/institutes/grid.445062.1", 
          "name": [
            "Vologda State Technical University, Vologda, Russia", 
            "Vologda State Pedagogical University, Vologda, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bystretskii", 
        "givenName": "M. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1014876231094", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036640363", 
          "https://doi.org/10.1023/a:1014876231094"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2010-02", 
    "datePublishedReg": "2010-02-01", 
    "description": "We study a priori estimates and solvability of a nonlinear two-point boundary value problem for systems of second-order ordinary differential equations with leading positively homogeneous nonlinearity of order > 1 vanishing on a single surface. Assuming that an a priori estimate holds, we prove the invariance of the solvability of the problem under a continuous change of the leading nonlinear homogeneous terms and under arbitrary perturbations that do not affect the behavior of the leading nonlinear homogeneous terms at infinity.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266110020138", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "name": "A priori estimates and solvability of the third two-point boundary value problem", 
    "pagination": "284-288", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f67e4649cf5d285878119db8d1100ac3ba40f968b49e9cb7ce132e4e85ebf114"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266110020138"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051746590"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266110020138", 
      "https://app.dimensions.ai/details/publication/pub.1051746590"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266110020138"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266110020138'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266110020138'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266110020138'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266110020138'


 

This table displays all metadata directly associated to this object as RDF triples.

72 TRIPLES      21 PREDICATES      28 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266110020138 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N74750704e08940119a5a97f4f6ff4eab
4 schema:citation sg:pub.10.1023/a:1014876231094
5 schema:datePublished 2010-02
6 schema:datePublishedReg 2010-02-01
7 schema:description We study a priori estimates and solvability of a nonlinear two-point boundary value problem for systems of second-order ordinary differential equations with leading positively homogeneous nonlinearity of order > 1 vanishing on a single surface. Assuming that an a priori estimate holds, we prove the invariance of the solvability of the problem under a continuous change of the leading nonlinear homogeneous terms and under arbitrary perturbations that do not affect the behavior of the leading nonlinear homogeneous terms at infinity.
8 schema:genre research_article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N5b854d486df54ea78af4ef52b099e94b
12 N957989187dbb4a22bd6e7d02a29d53dd
13 sg:journal.1135881
14 schema:name A priori estimates and solvability of the third two-point boundary value problem
15 schema:pagination 284-288
16 schema:productId N521ffd5730e34ff1bd3d7fc2bf0c427f
17 N5552b2eb93d44be4a08a16b41a3116ee
18 N70409d3d5ec34b85b60d63ce80018fe3
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051746590
20 https://doi.org/10.1134/s0012266110020138
21 schema:sdDatePublished 2019-04-10T23:22
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N05d5e4735fdb427cb6513d87a297f042
24 schema:url http://link.springer.com/10.1134/S0012266110020138
25 sgo:license sg:explorer/license/
26 sgo:sdDataset articles
27 rdf:type schema:ScholarlyArticle
28 N05d5e4735fdb427cb6513d87a297f042 schema:name Springer Nature - SN SciGraph project
29 rdf:type schema:Organization
30 N521ffd5730e34ff1bd3d7fc2bf0c427f schema:name dimensions_id
31 schema:value pub.1051746590
32 rdf:type schema:PropertyValue
33 N5552b2eb93d44be4a08a16b41a3116ee schema:name readcube_id
34 schema:value f67e4649cf5d285878119db8d1100ac3ba40f968b49e9cb7ce132e4e85ebf114
35 rdf:type schema:PropertyValue
36 N5b854d486df54ea78af4ef52b099e94b schema:issueNumber 2
37 rdf:type schema:PublicationIssue
38 N70409d3d5ec34b85b60d63ce80018fe3 schema:name doi
39 schema:value 10.1134/s0012266110020138
40 rdf:type schema:PropertyValue
41 N74750704e08940119a5a97f4f6ff4eab rdf:first sg:person.011053050736.40
42 rdf:rest N93625c7da43e4e46af2940c7d69282ea
43 N93625c7da43e4e46af2940c7d69282ea rdf:first Na0addd6b05874b1c980c391d66ba9b16
44 rdf:rest rdf:nil
45 N957989187dbb4a22bd6e7d02a29d53dd schema:volumeNumber 46
46 rdf:type schema:PublicationVolume
47 Na0addd6b05874b1c980c391d66ba9b16 schema:affiliation https://www.grid.ac/institutes/grid.445062.1
48 schema:familyName Bystretskii
49 schema:givenName M. V.
50 rdf:type schema:Person
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1135881 schema:issn 0012-2661
58 0374-0641
59 schema:name Differential Equations
60 rdf:type schema:Periodical
61 sg:person.011053050736.40 schema:affiliation https://www.grid.ac/institutes/grid.445062.1
62 schema:familyName Naimov
63 schema:givenName A. N.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011053050736.40
65 rdf:type schema:Person
66 sg:pub.10.1023/a:1014876231094 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036640363
67 https://doi.org/10.1023/a:1014876231094
68 rdf:type schema:CreativeWork
69 https://www.grid.ac/institutes/grid.445062.1 schema:alternateName Vologda State Pedagogical University
70 schema:name Vologda State Pedagogical University, Vologda, Russia
71 Vologda State Technical University, Vologda, Russia
72 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...