Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

O. O. Vasil’ev, N. I. Osetinskii, F. S. Vainshtein

ABSTRACT

In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a “graph of modules” of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems. More... »

PAGES

1783-1790

Journal

TITLE

Differential Equations

ISSUE

12

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s001226610912009x

DOI

http://dx.doi.org/10.1134/s001226610912009x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045300756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "O. O.", 
        "id": "sg:person.014155045257.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osetinskii", 
        "givenName": "N. I.", 
        "id": "sg:person.014005733555.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vainshtein", 
        "givenName": "F. S.", 
        "id": "sg:person.013530733507.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nav.3800040206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01932396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032216811", 
          "https://doi.org/10.1007/bf01932396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1952-0050559-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043546056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049390079", 
          "https://doi.org/10.1007/978-94-015-9333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049390079", 
          "https://doi.org/10.1007/978-94-015-9333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266108110037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496748", 
          "https://doi.org/10.1134/s0012266108110037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0201010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841173"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a \u201cgraph of modules\u201d of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s001226610912009x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem", 
    "pagination": "1783-1790", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7c8f9a281c7c3e17125a949ef1394d18d2d04bb0ef1c558d7000bc8d1861b15"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s001226610912009x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045300756"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s001226610912009x", 
      "https://app.dimensions.ai/details/publication/pub.1045300756"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S001226610912009X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s001226610912009x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N59191e48016946aaa1fe80d8dfb379f0
4 schema:citation sg:pub.10.1007/978-94-015-9333-5
5 sg:pub.10.1007/bf01932396
6 sg:pub.10.1134/s0012266108110037
7 https://doi.org/10.1002/nav.3800040206
8 https://doi.org/10.1090/s0002-9939-1952-0050559-1
9 https://doi.org/10.1137/0201010
10 schema:datePublished 2009-12
11 schema:datePublishedReg 2009-12-01
12 schema:description In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a “graph of modules” of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3f6b773020704fabb19ff80526ecf5c2
17 N60e1530aae0a431b8804bbe598ea16a5
18 sg:journal.1135881
19 schema:name Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem
20 schema:pagination 1783-1790
21 schema:productId N713c2734c591411daa51775ccf64cb3c
22 Nbad373ef9d3c4ca889737786266be980
23 Nfd4cdd2a916646f8894b90c28764dd9a
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300756
25 https://doi.org/10.1134/s001226610912009x
26 schema:sdDatePublished 2019-04-11T10:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Naa2f6d37003843629af703a3b011a4c3
29 schema:url http://link.springer.com/10.1134/S001226610912009X
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N38d4bcc3b8fd410ab9bbffb855ab5982 rdf:first sg:person.013530733507.15
34 rdf:rest rdf:nil
35 N3f6b773020704fabb19ff80526ecf5c2 schema:volumeNumber 45
36 rdf:type schema:PublicationVolume
37 N59191e48016946aaa1fe80d8dfb379f0 rdf:first sg:person.014155045257.38
38 rdf:rest Nfe1b61cce1fe4ee28d1f50ad97fbbe01
39 N60e1530aae0a431b8804bbe598ea16a5 schema:issueNumber 12
40 rdf:type schema:PublicationIssue
41 N713c2734c591411daa51775ccf64cb3c schema:name dimensions_id
42 schema:value pub.1045300756
43 rdf:type schema:PropertyValue
44 Naa2f6d37003843629af703a3b011a4c3 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nbad373ef9d3c4ca889737786266be980 schema:name readcube_id
47 schema:value d7c8f9a281c7c3e17125a949ef1394d18d2d04bb0ef1c558d7000bc8d1861b15
48 rdf:type schema:PropertyValue
49 Nfd4cdd2a916646f8894b90c28764dd9a schema:name doi
50 schema:value 10.1134/s001226610912009x
51 rdf:type schema:PropertyValue
52 Nfe1b61cce1fe4ee28d1f50ad97fbbe01 rdf:first sg:person.014005733555.00
53 rdf:rest N38d4bcc3b8fd410ab9bbffb855ab5982
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1135881 schema:issn 0012-2661
61 0374-0641
62 schema:name Differential Equations
63 rdf:type schema:Periodical
64 sg:person.013530733507.15 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
65 schema:familyName Vainshtein
66 schema:givenName F. S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15
68 rdf:type schema:Person
69 sg:person.014005733555.00 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
70 schema:familyName Osetinskii
71 schema:givenName N. I.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00
73 rdf:type schema:Person
74 sg:person.014155045257.38 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
75 schema:familyName Vasil’ev
76 schema:givenName O. O.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38
78 rdf:type schema:Person
79 sg:pub.10.1007/978-94-015-9333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049390079
80 https://doi.org/10.1007/978-94-015-9333-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01932396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032216811
83 https://doi.org/10.1007/bf01932396
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0012266108110037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496748
86 https://doi.org/10.1134/s0012266108110037
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/nav.3800040206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359865
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0002-9939-1952-0050559-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043546056
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/0201010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841173
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
95 schema:name Georgia Institute of Technology, Atlanta, USA
96 Russian State University of Oil and Gas, Moscow, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...