Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-12

AUTHORS

O. O. Vasil’ev, N. I. Osetinskii, F. S. Vainshtein

ABSTRACT

In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a “graph of modules” of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems. More... »

PAGES

1783-1790

References to SciGraph publications

Journal

TITLE

Differential Equations

ISSUE

12

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s001226610912009x

DOI

http://dx.doi.org/10.1134/s001226610912009x

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045300756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019ev", 
        "givenName": "O. O.", 
        "id": "sg:person.014155045257.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osetinskii", 
        "givenName": "N. I.", 
        "id": "sg:person.014005733555.00", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Georgia Institute of Technology", 
          "id": "https://www.grid.ac/institutes/grid.213917.f", 
          "name": [
            "Russian State University of Oil and Gas, Moscow, Russia", 
            "Georgia Institute of Technology, Atlanta, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vainshtein", 
        "givenName": "F. S.", 
        "id": "sg:person.013530733507.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/nav.3800040206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015359865"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01932396", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032216811", 
          "https://doi.org/10.1007/bf01932396"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/s0002-9939-1952-0050559-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043546056"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049390079", 
          "https://doi.org/10.1007/978-94-015-9333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-94-015-9333-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049390079", 
          "https://doi.org/10.1007/978-94-015-9333-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266108110037", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051496748", 
          "https://doi.org/10.1134/s0012266108110037"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/0201010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062841173"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-12", 
    "datePublishedReg": "2009-12-01", 
    "description": "In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a \u201cgraph of modules\u201d of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s001226610912009x", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "12", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem", 
    "pagination": "1783-1790", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d7c8f9a281c7c3e17125a949ef1394d18d2d04bb0ef1c558d7000bc8d1861b15"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s001226610912009x"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045300756"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s001226610912009x", 
      "https://app.dimensions.ai/details/publication/pub.1045300756"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:02", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000347_0000000347/records_89822_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S001226610912009X"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s001226610912009x'


 

This table displays all metadata directly associated to this object as RDF triples.

97 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s001226610912009x schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ncaa4a0374adf4b2ba696b960b6e91237
4 schema:citation sg:pub.10.1007/978-94-015-9333-5
5 sg:pub.10.1007/bf01932396
6 sg:pub.10.1134/s0012266108110037
7 https://doi.org/10.1002/nav.3800040206
8 https://doi.org/10.1090/s0002-9939-1952-0050559-1
9 https://doi.org/10.1137/0201010
10 schema:datePublished 2009-12
11 schema:datePublishedReg 2009-12-01
12 schema:description In the present paper, we consider linear stationary dynamical systems over a Boolean semiring B. We analyze the complete observability, identifiability, reachability, and controllability of such systems. We define the notion of a “graph of modules” of completely controllable, completely reachable Boolean linear stationary systems by analogy with the spaces of modules in the case of systems over fields. We give a graph-theoretic interpretation of systems of this class. We solve the isomorphism problem in this class of systems.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N457bcb9216c24b6ba797a3dcc2048c01
17 N4e7c805044454a79ab9036cbbef78926
18 sg:journal.1135881
19 schema:name Linear stationary control systems over a Boolean semiring: Geometric properties and the isomorphism problem
20 schema:pagination 1783-1790
21 schema:productId N81060be29d924a168cd3300fd7e976c2
22 N82d8b00d3eb748b99ddd58bb86271d8d
23 N8d15676e431a4f27a4b8481607952d7f
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045300756
25 https://doi.org/10.1134/s001226610912009x
26 schema:sdDatePublished 2019-04-11T10:02
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N12334f57a04e44e3bcf3f2e226e19193
29 schema:url http://link.springer.com/10.1134/S001226610912009X
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0b147f9d2ce7441c990c3523c1962325 rdf:first sg:person.014005733555.00
34 rdf:rest N60cbe32b2e63473382ae3f1520d204db
35 N12334f57a04e44e3bcf3f2e226e19193 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N457bcb9216c24b6ba797a3dcc2048c01 schema:volumeNumber 45
38 rdf:type schema:PublicationVolume
39 N4e7c805044454a79ab9036cbbef78926 schema:issueNumber 12
40 rdf:type schema:PublicationIssue
41 N60cbe32b2e63473382ae3f1520d204db rdf:first sg:person.013530733507.15
42 rdf:rest rdf:nil
43 N81060be29d924a168cd3300fd7e976c2 schema:name doi
44 schema:value 10.1134/s001226610912009x
45 rdf:type schema:PropertyValue
46 N82d8b00d3eb748b99ddd58bb86271d8d schema:name readcube_id
47 schema:value d7c8f9a281c7c3e17125a949ef1394d18d2d04bb0ef1c558d7000bc8d1861b15
48 rdf:type schema:PropertyValue
49 N8d15676e431a4f27a4b8481607952d7f schema:name dimensions_id
50 schema:value pub.1045300756
51 rdf:type schema:PropertyValue
52 Ncaa4a0374adf4b2ba696b960b6e91237 rdf:first sg:person.014155045257.38
53 rdf:rest N0b147f9d2ce7441c990c3523c1962325
54 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
55 schema:name Mathematical Sciences
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
58 schema:name Pure Mathematics
59 rdf:type schema:DefinedTerm
60 sg:journal.1135881 schema:issn 0012-2661
61 0374-0641
62 schema:name Differential Equations
63 rdf:type schema:Periodical
64 sg:person.013530733507.15 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
65 schema:familyName Vainshtein
66 schema:givenName F. S.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013530733507.15
68 rdf:type schema:Person
69 sg:person.014005733555.00 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
70 schema:familyName Osetinskii
71 schema:givenName N. I.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014005733555.00
73 rdf:type schema:Person
74 sg:person.014155045257.38 schema:affiliation https://www.grid.ac/institutes/grid.213917.f
75 schema:familyName Vasil’ev
76 schema:givenName O. O.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155045257.38
78 rdf:type schema:Person
79 sg:pub.10.1007/978-94-015-9333-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049390079
80 https://doi.org/10.1007/978-94-015-9333-5
81 rdf:type schema:CreativeWork
82 sg:pub.10.1007/bf01932396 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032216811
83 https://doi.org/10.1007/bf01932396
84 rdf:type schema:CreativeWork
85 sg:pub.10.1134/s0012266108110037 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051496748
86 https://doi.org/10.1134/s0012266108110037
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/nav.3800040206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015359865
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1090/s0002-9939-1952-0050559-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043546056
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/0201010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062841173
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.213917.f schema:alternateName Georgia Institute of Technology
95 schema:name Georgia Institute of Technology, Atlanta, USA
96 Russian State University of Oil and Gas, Moscow, Russia
97 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...