Synthesis of minimal linear stabilizers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

A. V. Il’in, S. K. Korovin, V. V. Fomichev

ABSTRACT

We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers. More... »

PAGES

694-703

Journal

TITLE

Differential Equations

ISSUE

5

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266109050085

DOI

http://dx.doi.org/10.1134/s0012266109050085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016253392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "A. V.", 
        "id": "sg:person.011171570231.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovin", 
        "givenName": "S. K.", 
        "id": "sg:person.012507046153.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507046153.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fomichev", 
        "givenName": "V. V.", 
        "id": "sg:person.011276752573.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276752573.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266106100028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009455077", 
          "https://doi.org/10.1134/s0012266106100028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266106120044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021817976", 
          "https://doi.org/10.1134/s0012266106120044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1975.1101028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471647"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266109050085", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Synthesis of minimal linear stabilizers", 
    "pagination": "694-703", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d718780e1a0b08f36c3d99c4d646791605b5eb919843d730128f0b429af6722"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266109050085"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016253392"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266109050085", 
      "https://app.dimensions.ai/details/publication/pub.1016253392"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266109050085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266109050085 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N79943f2af90f45c09445407ee4a436f9
4 schema:citation sg:pub.10.1134/s0012266106100028
5 sg:pub.10.1134/s0012266106120044
6 https://doi.org/10.1109/tac.1975.1101028
7 schema:datePublished 2009-05
8 schema:datePublishedReg 2009-05-01
9 schema:description We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N7fef08bd7c704f20bfd99d4963cec6b2
14 Nd0e97486c6204057a90ef2ec1455f5ae
15 sg:journal.1135881
16 schema:name Synthesis of minimal linear stabilizers
17 schema:pagination 694-703
18 schema:productId N073f7413fe4d4fb1bf06b35ecaafb97a
19 N493f588f551e4c29b3405c3bd246c69c
20 Nc7e96f65a18b4ea882b47d432acc6cd6
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016253392
22 https://doi.org/10.1134/s0012266109050085
23 schema:sdDatePublished 2019-04-11T09:26
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Nea064651e0d34eac9668b9d123bf23fe
26 schema:url http://link.springer.com/10.1134/S0012266109050085
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N073f7413fe4d4fb1bf06b35ecaafb97a schema:name dimensions_id
31 schema:value pub.1016253392
32 rdf:type schema:PropertyValue
33 N493f588f551e4c29b3405c3bd246c69c schema:name readcube_id
34 schema:value 4d718780e1a0b08f36c3d99c4d646791605b5eb919843d730128f0b429af6722
35 rdf:type schema:PropertyValue
36 N79943f2af90f45c09445407ee4a436f9 rdf:first sg:person.011171570231.42
37 rdf:rest N7f9f09c827cf4c3d8aba28a6998ab56b
38 N7f9f09c827cf4c3d8aba28a6998ab56b rdf:first sg:person.012507046153.78
39 rdf:rest Na0e634edbda0471396b1edbce4577570
40 N7fef08bd7c704f20bfd99d4963cec6b2 schema:volumeNumber 45
41 rdf:type schema:PublicationVolume
42 Na0e634edbda0471396b1edbce4577570 rdf:first sg:person.011276752573.21
43 rdf:rest rdf:nil
44 Nc7e96f65a18b4ea882b47d432acc6cd6 schema:name doi
45 schema:value 10.1134/s0012266109050085
46 rdf:type schema:PropertyValue
47 Nd0e97486c6204057a90ef2ec1455f5ae schema:issueNumber 5
48 rdf:type schema:PublicationIssue
49 Nea064651e0d34eac9668b9d123bf23fe schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1135881 schema:issn 0012-2661
58 0374-0641
59 schema:name Differential Equations
60 rdf:type schema:Periodical
61 sg:person.011171570231.42 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
62 schema:familyName Il’in
63 schema:givenName A. V.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42
65 rdf:type schema:Person
66 sg:person.011276752573.21 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
67 schema:familyName Fomichev
68 schema:givenName V. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276752573.21
70 rdf:type schema:Person
71 sg:person.012507046153.78 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
72 schema:familyName Korovin
73 schema:givenName S. K.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507046153.78
75 rdf:type schema:Person
76 sg:pub.10.1134/s0012266106100028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009455077
77 https://doi.org/10.1134/s0012266106100028
78 rdf:type schema:CreativeWork
79 sg:pub.10.1134/s0012266106120044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021817976
80 https://doi.org/10.1134/s0012266106120044
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/tac.1975.1101028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471647
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
85 schema:name Moscow State University, Moscow, Russia
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...