Synthesis of minimal linear stabilizers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-05

AUTHORS

A. V. Il’in, S. K. Korovin, V. V. Fomichev

ABSTRACT

We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers. More... »

PAGES

694-703

References to SciGraph publications

Journal

TITLE

Differential Equations

ISSUE

5

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266109050085

DOI

http://dx.doi.org/10.1134/s0012266109050085

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1016253392


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Il\u2019in", 
        "givenName": "A. V.", 
        "id": "sg:person.011171570231.42", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korovin", 
        "givenName": "S. K.", 
        "id": "sg:person.012507046153.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507046153.78"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "Moscow State University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fomichev", 
        "givenName": "V. V.", 
        "id": "sg:person.011276752573.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276752573.21"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0012266106100028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009455077", 
          "https://doi.org/10.1134/s0012266106100028"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0012266106120044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021817976", 
          "https://doi.org/10.1134/s0012266106120044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tac.1975.1101028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061471647"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-05", 
    "datePublishedReg": "2009-05-01", 
    "description": "We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266109050085", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Synthesis of minimal linear stabilizers", 
    "pagination": "694-703", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4d718780e1a0b08f36c3d99c4d646791605b5eb919843d730128f0b429af6722"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266109050085"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1016253392"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266109050085", 
      "https://app.dimensions.ai/details/publication/pub.1016253392"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:26", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000345_0000000345/records_64115_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266109050085"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266109050085'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      30 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266109050085 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nfbd30b0461944253be876dd10bc66f9d
4 schema:citation sg:pub.10.1134/s0012266106100028
5 sg:pub.10.1134/s0012266106120044
6 https://doi.org/10.1109/tac.1975.1101028
7 schema:datePublished 2009-05
8 schema:datePublishedReg 2009-05-01
9 schema:description We consider the stabilizer synthesis problem for linear stationary control dynamical systems; attention is mainly focused on the investigation of possibilities to reduce the order of such stabilizers. The problem is considered in two settings. The first setting deals with the construction of stabilizers of given order (in particular, the minimum possible order); no conditions are imposed on the spectrum of the closed system. For scalar (single-input-single-output) control systems, we suggest an approach to the solution of this problem and obtain necessary and sufficient conditions for the existence of a stabilizer of a given order. The second problem is that of synthesizing a stabilizer of minimum order with given dynamic properties (a given spectrum or a given distribution of the spectrum of the closed system, in particular, with a guaranteed convergence rate of the closed system). For this problem, we suggest two approaches that permit one to obtain an upper bound for the dimension of such stabilizers.
10 schema:genre research_article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N13946e8657764178b9b92267d660d334
14 N3d8b6384440e4e359c1e9c33fb9ebb56
15 sg:journal.1135881
16 schema:name Synthesis of minimal linear stabilizers
17 schema:pagination 694-703
18 schema:productId N34d6d26853c14f199620859df2723bdf
19 N96830b4015044af5a0cf1c267b66e4fc
20 Nc716d58c732c4a0382b6c37d0a9731e1
21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016253392
22 https://doi.org/10.1134/s0012266109050085
23 schema:sdDatePublished 2019-04-11T09:26
24 schema:sdLicense https://scigraph.springernature.com/explorer/license/
25 schema:sdPublisher Ndf1f565fa37641af89b63ec9089de6e0
26 schema:url http://link.springer.com/10.1134/S0012266109050085
27 sgo:license sg:explorer/license/
28 sgo:sdDataset articles
29 rdf:type schema:ScholarlyArticle
30 N06a6cdb433c8429d81d4ca386c51ccf1 rdf:first sg:person.012507046153.78
31 rdf:rest Nb7ca2fdd54b04327bfee117ea1596e13
32 N13946e8657764178b9b92267d660d334 schema:volumeNumber 45
33 rdf:type schema:PublicationVolume
34 N34d6d26853c14f199620859df2723bdf schema:name dimensions_id
35 schema:value pub.1016253392
36 rdf:type schema:PropertyValue
37 N3d8b6384440e4e359c1e9c33fb9ebb56 schema:issueNumber 5
38 rdf:type schema:PublicationIssue
39 N96830b4015044af5a0cf1c267b66e4fc schema:name doi
40 schema:value 10.1134/s0012266109050085
41 rdf:type schema:PropertyValue
42 Nb7ca2fdd54b04327bfee117ea1596e13 rdf:first sg:person.011276752573.21
43 rdf:rest rdf:nil
44 Nc716d58c732c4a0382b6c37d0a9731e1 schema:name readcube_id
45 schema:value 4d718780e1a0b08f36c3d99c4d646791605b5eb919843d730128f0b429af6722
46 rdf:type schema:PropertyValue
47 Ndf1f565fa37641af89b63ec9089de6e0 schema:name Springer Nature - SN SciGraph project
48 rdf:type schema:Organization
49 Nfbd30b0461944253be876dd10bc66f9d rdf:first sg:person.011171570231.42
50 rdf:rest N06a6cdb433c8429d81d4ca386c51ccf1
51 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
52 schema:name Mathematical Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
55 schema:name Pure Mathematics
56 rdf:type schema:DefinedTerm
57 sg:journal.1135881 schema:issn 0012-2661
58 0374-0641
59 schema:name Differential Equations
60 rdf:type schema:Periodical
61 sg:person.011171570231.42 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
62 schema:familyName Il’in
63 schema:givenName A. V.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011171570231.42
65 rdf:type schema:Person
66 sg:person.011276752573.21 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
67 schema:familyName Fomichev
68 schema:givenName V. V.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011276752573.21
70 rdf:type schema:Person
71 sg:person.012507046153.78 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
72 schema:familyName Korovin
73 schema:givenName S. K.
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012507046153.78
75 rdf:type schema:Person
76 sg:pub.10.1134/s0012266106100028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009455077
77 https://doi.org/10.1134/s0012266106100028
78 rdf:type schema:CreativeWork
79 sg:pub.10.1134/s0012266106120044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021817976
80 https://doi.org/10.1134/s0012266106120044
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1109/tac.1975.1101028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061471647
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
85 schema:name Moscow State University, Moscow, Russia
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...