Spectrum and the trace formula for a two-dimensional Schrödinger operator in a homogeneous magnetic field View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-04

AUTHORS

Kh. Kh. Murtazin, Z. Yu. Fazullin

ABSTRACT

In the space L2(ℝ2), we consider the operator . We study the spectrum of H and, for V ∈ C02(ℝ2), prove the trace formula where c0 = π−1V(x) dx and the µk(i) are the eigenvalues of H.

PAGES

564-579

References to SciGraph publications

Journal

TITLE

Differential Equations

ISSUE

4

VOLUME

45

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266109040107

DOI

http://dx.doi.org/10.1134/s0012266109040107

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051569299


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bashkir State University", 
          "id": "https://www.grid.ac/institutes/grid.77269.3d", 
          "name": [
            "Bashkir State University, Ufa, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Murtazin", 
        "givenName": "Kh. Kh.", 
        "id": "sg:person.011403537431.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011403537431.35"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bashkir State University", 
          "id": "https://www.grid.ac/institutes/grid.77269.3d", 
          "name": [
            "Bashkir State University, Ufa, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fazullin", 
        "givenName": "Z. Yu.", 
        "id": "sg:person.015443741215.33", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443741215.33"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/a:1019206902268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030191034", 
          "https://doi.org/10.1023/a:1019206902268"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm4833", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072370155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm566", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072372176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/coll/023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098741876"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-04", 
    "datePublishedReg": "2009-04-01", 
    "description": "In the space L2(\u211d2), we consider the operator . We study the spectrum of H and, for V \u2208 C02(\u211d2), prove the trace formula where c0 = \u03c0\u22121V(x) dx and the \u00b5k(i) are the eigenvalues of H.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266109040107", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Spectrum and the trace formula for a two-dimensional Schr\u00f6dinger operator in a homogeneous magnetic field", 
    "pagination": "564-579", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5a729b267baafa997e42b396d159947542b63aa80a8fcf5cae96b18ab120f27"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266109040107"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051569299"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266109040107", 
      "https://app.dimensions.ai/details/publication/pub.1051569299"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266109040107"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266109040107'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266109040107'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266109040107'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266109040107'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      20 PREDICATES      29 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266109040107 schema:author N6cd652e996f94efc89e84c7ae6844a50
2 schema:citation sg:pub.10.1023/a:1019206902268
3 https://doi.org/10.1090/coll/023
4 https://doi.org/10.4213/rm4833
5 https://doi.org/10.4213/sm566
6 schema:datePublished 2009-04
7 schema:datePublishedReg 2009-04-01
8 schema:description In the space L2(ℝ2), we consider the operator . We study the spectrum of H and, for V ∈ C02(ℝ2), prove the trace formula where c0 = π−1V(x) dx and the µk(i) are the eigenvalues of H.
9 schema:genre research_article
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf N155750a22b0c465c9749c88844073e84
13 Na260fb9fd66a4688b376c0d9b8e9d75c
14 sg:journal.1135881
15 schema:name Spectrum and the trace formula for a two-dimensional Schrödinger operator in a homogeneous magnetic field
16 schema:pagination 564-579
17 schema:productId N03e60ede4dde414bb182fabbcfbc8b3f
18 N9546fa7f0ac74c5c8446d461a4e7e56c
19 Ndd9d006a18694db1bf1fba7e0ab9e90c
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051569299
21 https://doi.org/10.1134/s0012266109040107
22 schema:sdDatePublished 2019-04-10T23:22
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher Nd64285a77d1349cc8b72f988ace91c6f
25 schema:url http://link.springer.com/10.1134/S0012266109040107
26 sgo:license sg:explorer/license/
27 sgo:sdDataset articles
28 rdf:type schema:ScholarlyArticle
29 N03e60ede4dde414bb182fabbcfbc8b3f schema:name readcube_id
30 schema:value f5a729b267baafa997e42b396d159947542b63aa80a8fcf5cae96b18ab120f27
31 rdf:type schema:PropertyValue
32 N155750a22b0c465c9749c88844073e84 schema:volumeNumber 45
33 rdf:type schema:PublicationVolume
34 N4d6781a3c13243a99a363c6372fcc1e1 rdf:first sg:person.015443741215.33
35 rdf:rest rdf:nil
36 N6cd652e996f94efc89e84c7ae6844a50 rdf:first sg:person.011403537431.35
37 rdf:rest N4d6781a3c13243a99a363c6372fcc1e1
38 N9546fa7f0ac74c5c8446d461a4e7e56c schema:name dimensions_id
39 schema:value pub.1051569299
40 rdf:type schema:PropertyValue
41 Na260fb9fd66a4688b376c0d9b8e9d75c schema:issueNumber 4
42 rdf:type schema:PublicationIssue
43 Nd64285a77d1349cc8b72f988ace91c6f schema:name Springer Nature - SN SciGraph project
44 rdf:type schema:Organization
45 Ndd9d006a18694db1bf1fba7e0ab9e90c schema:name doi
46 schema:value 10.1134/s0012266109040107
47 rdf:type schema:PropertyValue
48 sg:journal.1135881 schema:issn 0012-2661
49 0374-0641
50 schema:name Differential Equations
51 rdf:type schema:Periodical
52 sg:person.011403537431.35 schema:affiliation https://www.grid.ac/institutes/grid.77269.3d
53 schema:familyName Murtazin
54 schema:givenName Kh. Kh.
55 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011403537431.35
56 rdf:type schema:Person
57 sg:person.015443741215.33 schema:affiliation https://www.grid.ac/institutes/grid.77269.3d
58 schema:familyName Fazullin
59 schema:givenName Z. Yu.
60 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015443741215.33
61 rdf:type schema:Person
62 sg:pub.10.1023/a:1019206902268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030191034
63 https://doi.org/10.1023/a:1019206902268
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1090/coll/023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098741876
66 rdf:type schema:CreativeWork
67 https://doi.org/10.4213/rm4833 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072370155
68 rdf:type schema:CreativeWork
69 https://doi.org/10.4213/sm566 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072372176
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.77269.3d schema:alternateName Bashkir State University
72 schema:name Bashkir State University, Ufa, Russia
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...