Comparative index for solutions of symplectic difference systems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2009-03

AUTHORS

Yu. V. Eliseeva

ABSTRACT

We introduce the comparative index of two conjoined bases of a symplectic difference system, which generalizes difference analogs of canonical systems of differential equations. We consider the main properties of the comparative index and its relation to the number of focal points of a conjoined basis of the symplectic system. We prove a formula relating the number of focal points (including multiplicities) of two bases in the interval (i, i + 1] and corollaries of this formula such as an estimate for the difference of the numbers of focal points of two conjoined bases in the interval (0, N + 1], the equality of the numbers of focal points of principal solutions for the primal and reciprocal systems, sufficient conditions for the solvability of the Riccati equation for a disconjugate symplectic system, etc. More... »

PAGES

445-459

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0012266109030148

DOI

http://dx.doi.org/10.1134/s0012266109030148

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035907744


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State Technological University", 
          "id": "https://www.grid.ac/institutes/grid.446318.c", 
          "name": [
            "Moscow State Technological University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Eliseeva", 
        "givenName": "Yu. V.", 
        "id": "sg:person.07647625743.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647625743.34"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1080/10236100309487540", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006004973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1201/9781420034905.ch15", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127723"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmaa.2006.01.074", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053677917"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1023619031000060972", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058357003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1216/rmjm/1181071889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064430818"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/faa267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072363373"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-01-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-01-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-01-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-01-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.7153/mia-01-36", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1073624074"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/9789812770752_0014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096054650"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2009-03", 
    "datePublishedReg": "2009-03-01", 
    "description": "We introduce the comparative index of two conjoined bases of a symplectic difference system, which generalizes difference analogs of canonical systems of differential equations. We consider the main properties of the comparative index and its relation to the number of focal points of a conjoined basis of the symplectic system. We prove a formula relating the number of focal points (including multiplicities) of two bases in the interval (i, i + 1] and corollaries of this formula such as an estimate for the difference of the numbers of focal points of two conjoined bases in the interval (0, N + 1], the equality of the numbers of focal points of principal solutions for the primal and reciprocal systems, sufficient conditions for the solvability of the Riccati equation for a disconjugate symplectic system, etc.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0012266109030148", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1135881", 
        "issn": [
          "0012-2661", 
          "0374-0641"
        ], 
        "name": "Differential Equations", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "name": "Comparative index for solutions of symplectic difference systems", 
    "pagination": "445-459", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "ab0d91844833a890e2e01592b740c8f30c1b437589ebc7d762b14a4fb5e6b511"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0012266109030148"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035907744"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0012266109030148", 
      "https://app.dimensions.ai/details/publication/pub.1035907744"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T09:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000338_0000000338/records_47960_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0012266109030148"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266109030148'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266109030148'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266109030148'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266109030148'


 

This table displays all metadata directly associated to this object as RDF triples.

85 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0012266109030148 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author N49ad8b90bb5c4d6cae7d7cd6e4d95815
4 schema:citation https://doi.org/10.1016/j.jmaa.2006.01.074
5 https://doi.org/10.1080/10236100309487540
6 https://doi.org/10.1080/1023619031000060972
7 https://doi.org/10.1142/9789812770752_0014
8 https://doi.org/10.1201/9781420034905.ch15
9 https://doi.org/10.1216/rmjm/1181071889
10 https://doi.org/10.4213/faa267
11 https://doi.org/10.7153/mia-01-36
12 schema:datePublished 2009-03
13 schema:datePublishedReg 2009-03-01
14 schema:description We introduce the comparative index of two conjoined bases of a symplectic difference system, which generalizes difference analogs of canonical systems of differential equations. We consider the main properties of the comparative index and its relation to the number of focal points of a conjoined basis of the symplectic system. We prove a formula relating the number of focal points (including multiplicities) of two bases in the interval (i, i + 1] and corollaries of this formula such as an estimate for the difference of the numbers of focal points of two conjoined bases in the interval (0, N + 1], the equality of the numbers of focal points of principal solutions for the primal and reciprocal systems, sufficient conditions for the solvability of the Riccati equation for a disconjugate symplectic system, etc.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N4a4b579e08de4443b1206359475d9a1b
19 N5bf6b3461df44da4b854e6623ff6770a
20 sg:journal.1135881
21 schema:name Comparative index for solutions of symplectic difference systems
22 schema:pagination 445-459
23 schema:productId N0c3673d6a6384386803ea363a448ce25
24 Nac861b61a03d4e6ea5fcc1ef0f69782e
25 Nc29c1bba8e1744499d33fefe1b75bd9c
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035907744
27 https://doi.org/10.1134/s0012266109030148
28 schema:sdDatePublished 2019-04-11T09:08
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N832bedc823ce4ff4baee9c82f3f4fa5b
31 schema:url http://link.springer.com/10.1134/S0012266109030148
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0c3673d6a6384386803ea363a448ce25 schema:name readcube_id
36 schema:value ab0d91844833a890e2e01592b740c8f30c1b437589ebc7d762b14a4fb5e6b511
37 rdf:type schema:PropertyValue
38 N49ad8b90bb5c4d6cae7d7cd6e4d95815 rdf:first sg:person.07647625743.34
39 rdf:rest rdf:nil
40 N4a4b579e08de4443b1206359475d9a1b schema:issueNumber 3
41 rdf:type schema:PublicationIssue
42 N5bf6b3461df44da4b854e6623ff6770a schema:volumeNumber 45
43 rdf:type schema:PublicationVolume
44 N832bedc823ce4ff4baee9c82f3f4fa5b schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 Nac861b61a03d4e6ea5fcc1ef0f69782e schema:name dimensions_id
47 schema:value pub.1035907744
48 rdf:type schema:PropertyValue
49 Nc29c1bba8e1744499d33fefe1b75bd9c schema:name doi
50 schema:value 10.1134/s0012266109030148
51 rdf:type schema:PropertyValue
52 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
53 schema:name Mathematical Sciences
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
56 schema:name Pure Mathematics
57 rdf:type schema:DefinedTerm
58 sg:journal.1135881 schema:issn 0012-2661
59 0374-0641
60 schema:name Differential Equations
61 rdf:type schema:Periodical
62 sg:person.07647625743.34 schema:affiliation https://www.grid.ac/institutes/grid.446318.c
63 schema:familyName Eliseeva
64 schema:givenName Yu. V.
65 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07647625743.34
66 rdf:type schema:Person
67 https://doi.org/10.1016/j.jmaa.2006.01.074 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053677917
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1080/10236100309487540 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006004973
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1080/1023619031000060972 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058357003
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1142/9789812770752_0014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096054650
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1201/9781420034905.ch15 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127723
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1216/rmjm/1181071889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064430818
78 rdf:type schema:CreativeWork
79 https://doi.org/10.4213/faa267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072363373
80 rdf:type schema:CreativeWork
81 https://doi.org/10.7153/mia-01-36 schema:sameAs https://app.dimensions.ai/details/publication/pub.1073624074
82 rdf:type schema:CreativeWork
83 https://www.grid.ac/institutes/grid.446318.c schema:alternateName Moscow State Technological University
84 schema:name Moscow State Technological University, Moscow, Russia
85 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...