On the well-posedness of the cauchy problem and the mixed problem for some class of hyperbolic systems and equations with ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-06

AUTHORS

P. A. Zakharchenko, E. V. Radkevich

ABSTRACT

We study the well-posedness of the mixed problem for hyperbolic equations with constant coefficients and with characteristics of variable multiplicity. We single out a class of higher-order hyperbolic operators with constant coefficients and with characteristics of variable multiplicity, for which we obtain a generalization of the Sakamoto conditions for the well-posedness of the mixed problem in L2. More... »

PAGES

817-834

References to SciGraph publications

  • 1993. Extended Thermodynamics in NONE
  • 1996-06. Moment closure hierarchies for kinetic theories in JOURNAL OF STATISTICAL PHYSICS
  • Journal

    TITLE

    Differential Equations

    ISSUE

    6

    VOLUME

    44

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0012266108060074

    DOI

    http://dx.doi.org/10.1134/s0012266108060074

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1011573365


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Zakharchenko", 
            "givenName": "P. A.", 
            "id": "sg:person.014606273741.20", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606273741.20"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Moscow State University", 
              "id": "https://www.grid.ac/institutes/grid.14476.30", 
              "name": [
                "Moscow State University, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Radkevich", 
            "givenName": "E. V.", 
            "id": "sg:person.010212007350.31", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02179552", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003473715", 
              "https://doi.org/10.1007/bf02179552"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009827263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.3160470602", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009827263"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://app.dimensions.ai/details/publication/pub.1047633579", 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047633579", 
              "https://doi.org/10.1007/978-1-4684-0447-0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/978-1-4684-0447-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047633579", 
              "https://doi.org/10.1007/978-1-4684-0447-0"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2008-06", 
        "datePublishedReg": "2008-06-01", 
        "description": "We study the well-posedness of the mixed problem for hyperbolic equations with constant coefficients and with characteristics of variable multiplicity. We single out a class of higher-order hyperbolic operators with constant coefficients and with characteristics of variable multiplicity, for which we obtain a generalization of the Sakamoto conditions for the well-posedness of the mixed problem in L2.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0012266108060074", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1135881", 
            "issn": [
              "0012-2661", 
              "0374-0641"
            ], 
            "name": "Differential Equations", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "6", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "44"
          }
        ], 
        "name": "On the well-posedness of the cauchy problem and the mixed problem for some class of hyperbolic systems and equations with constant coefficients and characteristics of variable multiplicity", 
        "pagination": "817-834", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "3724187da3192d0e8e811255f7504fca0f8125f7d7572d89b8a002a4702577d8"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0012266108060074"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1011573365"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0012266108060074", 
          "https://app.dimensions.ai/details/publication/pub.1011573365"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-10T19:54", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000498.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "http://link.springer.com/10.1134/S0012266108060074"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0012266108060074'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0012266108060074'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0012266108060074'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0012266108060074'


     

    This table displays all metadata directly associated to this object as RDF triples.

    81 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0012266108060074 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N8e58078f2b9c4efe818b39204abfe5d0
    4 schema:citation sg:pub.10.1007/978-1-4684-0447-0
    5 sg:pub.10.1007/bf02179552
    6 https://app.dimensions.ai/details/publication/pub.1047633579
    7 https://doi.org/10.1002/cpa.3160470602
    8 schema:datePublished 2008-06
    9 schema:datePublishedReg 2008-06-01
    10 schema:description We study the well-posedness of the mixed problem for hyperbolic equations with constant coefficients and with characteristics of variable multiplicity. We single out a class of higher-order hyperbolic operators with constant coefficients and with characteristics of variable multiplicity, for which we obtain a generalization of the Sakamoto conditions for the well-posedness of the mixed problem in L2.
    11 schema:genre research_article
    12 schema:inLanguage en
    13 schema:isAccessibleForFree false
    14 schema:isPartOf Nacb61757fc8f46b4b08b531270de1a09
    15 Nf43927a7e28d4598a4a9d2fc497d0993
    16 sg:journal.1135881
    17 schema:name On the well-posedness of the cauchy problem and the mixed problem for some class of hyperbolic systems and equations with constant coefficients and characteristics of variable multiplicity
    18 schema:pagination 817-834
    19 schema:productId N7f759b7742594b269373460def7d9edd
    20 Ndcdfb3a29c5442b79db1cb023d2f4c75
    21 Nf6740873d0ad476cb40559aba950c33d
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011573365
    23 https://doi.org/10.1134/s0012266108060074
    24 schema:sdDatePublished 2019-04-10T19:54
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nfd4482a90d984948a0801a1ad7554505
    27 schema:url http://link.springer.com/10.1134/S0012266108060074
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset articles
    30 rdf:type schema:ScholarlyArticle
    31 N4357cfc6e16e4b05bdc27a23ad21e1af rdf:first sg:person.010212007350.31
    32 rdf:rest rdf:nil
    33 N7f759b7742594b269373460def7d9edd schema:name dimensions_id
    34 schema:value pub.1011573365
    35 rdf:type schema:PropertyValue
    36 N8e58078f2b9c4efe818b39204abfe5d0 rdf:first sg:person.014606273741.20
    37 rdf:rest N4357cfc6e16e4b05bdc27a23ad21e1af
    38 Nacb61757fc8f46b4b08b531270de1a09 schema:volumeNumber 44
    39 rdf:type schema:PublicationVolume
    40 Ndcdfb3a29c5442b79db1cb023d2f4c75 schema:name readcube_id
    41 schema:value 3724187da3192d0e8e811255f7504fca0f8125f7d7572d89b8a002a4702577d8
    42 rdf:type schema:PropertyValue
    43 Nf43927a7e28d4598a4a9d2fc497d0993 schema:issueNumber 6
    44 rdf:type schema:PublicationIssue
    45 Nf6740873d0ad476cb40559aba950c33d schema:name doi
    46 schema:value 10.1134/s0012266108060074
    47 rdf:type schema:PropertyValue
    48 Nfd4482a90d984948a0801a1ad7554505 schema:name Springer Nature - SN SciGraph project
    49 rdf:type schema:Organization
    50 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    51 schema:name Mathematical Sciences
    52 rdf:type schema:DefinedTerm
    53 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    54 schema:name Pure Mathematics
    55 rdf:type schema:DefinedTerm
    56 sg:journal.1135881 schema:issn 0012-2661
    57 0374-0641
    58 schema:name Differential Equations
    59 rdf:type schema:Periodical
    60 sg:person.010212007350.31 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    61 schema:familyName Radkevich
    62 schema:givenName E. V.
    63 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
    64 rdf:type schema:Person
    65 sg:person.014606273741.20 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
    66 schema:familyName Zakharchenko
    67 schema:givenName P. A.
    68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014606273741.20
    69 rdf:type schema:Person
    70 sg:pub.10.1007/978-1-4684-0447-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047633579
    71 https://doi.org/10.1007/978-1-4684-0447-0
    72 rdf:type schema:CreativeWork
    73 sg:pub.10.1007/bf02179552 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003473715
    74 https://doi.org/10.1007/bf02179552
    75 rdf:type schema:CreativeWork
    76 https://app.dimensions.ai/details/publication/pub.1047633579 schema:CreativeWork
    77 https://doi.org/10.1002/cpa.3160470602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009827263
    78 rdf:type schema:CreativeWork
    79 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
    80 schema:name Moscow State University, Moscow, Russia
    81 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...