Effect of stochasticity of the spatial distribution of particles in a gas suspension on combustion front propagation View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2014-05

AUTHORS

P. S. Grinchuk

ABSTRACT

A statistical model of combustion of a gas suspension of solid particles is proposed. The model takes into account the influence of the stochastic spatial distribution of particles on the combustion front velocity. The Bose-Einstein distribution in the presentation of occupation numbers is used as the basic mathematical apparatus of the model. The model offers an explanation for the effect observed in some experiments, which is associated with the shift of the combustion front velocity peak to the range of fuel-rich gas suspensions. The limits of applicability of the proposed statistical model to real gas suspensions are estimated. More... »

PAGES

272-281

References to SciGraph publications

  • 2005-11. Ignition and Combustion of Dust-Gas Suspensions in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1979-11. Effect of the structure of a gas suspension on the process of flame propagation in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2005-03. Statistical simulation of aluminum agglomeration during combustion of heterogeneous condensed mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 1996-11. Statistical model of flame-front propagation in a boron-air mixture in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2001-11. Ignition of the Gas–Coal Dust Mixture. Pointwise Approximation in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2004-07. Percolation Phase Transition in Combustion of Heterogeneous Mixtures in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2002-11. Flame Propagation in Two-Component Aluminum–Boron Gas Suspensions in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • 2005-07. Dynamic Features of Combustion of Polydisperse Aluminum Powders in a Gas in COMBUSTION, EXPLOSION, AND SHOCK WAVES
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0010508214030046

    DOI

    http://dx.doi.org/10.1134/s0010508214030046

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1023684788


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Engineering", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Interdisciplinary Engineering", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, 220072, Minsk, Belarus", 
              "id": "http://www.grid.ac/institutes/grid.410300.6", 
              "name": [
                "Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grinchuk", 
            "givenName": "P. S.", 
            "id": "sg:person.01037416256.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:cesw.0000033563.66432.1c", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021588941", 
              "https://doi.org/10.1023/b:cesw.0000033563.66432.1c"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1012924029736", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024689912", 
              "https://doi.org/10.1023/a:1012924029736"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10573-005-0076-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037819779", 
              "https://doi.org/10.1007/s10573-005-0076-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1021136126730", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1034960652", 
              "https://doi.org/10.1023/a:1021136126730"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10573-005-0053-8", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1048649650", 
              "https://doi.org/10.1007/s10573-005-0053-8"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00739859", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035272023", 
              "https://doi.org/10.1007/bf00739859"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf02111563", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032780087", 
              "https://doi.org/10.1007/bf02111563"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s10573-005-0020-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002677193", 
              "https://doi.org/10.1007/s10573-005-0020-4"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-05", 
        "datePublishedReg": "2014-05-01", 
        "description": "A statistical model of combustion of a gas suspension of solid particles is proposed. The model takes into account the influence of the stochastic spatial distribution of particles on the combustion front velocity. The Bose-Einstein distribution in the presentation of occupation numbers is used as the basic mathematical apparatus of the model. The model offers an explanation for the effect observed in some experiments, which is associated with the shift of the combustion front velocity peak to the range of fuel-rich gas suspensions. The limits of applicability of the proposed statistical model to real gas suspensions are estimated.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0010508214030046", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1049027", 
            "issn": [
              "0010-5082", 
              "1573-8345"
            ], 
            "name": "Combustion, Explosion, and Shock Waves", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "3", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "50"
          }
        ], 
        "keywords": [
          "gas suspension", 
          "combustion front velocity", 
          "combustion front propagation", 
          "solid particles", 
          "front velocity", 
          "statistical model", 
          "basic mathematical apparatus", 
          "front propagation", 
          "effect of stochasticity", 
          "spatial distribution", 
          "velocity peaks", 
          "particles", 
          "mathematical apparatus", 
          "stochastic spatial distribution", 
          "limits of applicability", 
          "Bose-Einstein distribution", 
          "suspension", 
          "combustion", 
          "velocity", 
          "occupation numbers", 
          "propagation", 
          "model", 
          "distribution", 
          "stochasticity", 
          "apparatus", 
          "influence", 
          "applicability", 
          "effect", 
          "experiments", 
          "range", 
          "account", 
          "limit", 
          "peak", 
          "number", 
          "shift", 
          "explanation", 
          "presentation", 
          "combustion front velocity peak", 
          "front velocity peak", 
          "fuel-rich gas suspensions", 
          "real gas suspensions"
        ], 
        "name": "Effect of stochasticity of the spatial distribution of particles in a gas suspension on combustion front propagation", 
        "pagination": "272-281", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1023684788"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0010508214030046"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0010508214030046", 
          "https://app.dimensions.ai/details/publication/pub.1023684788"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_635.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0010508214030046"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0010508214030046'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0010508214030046'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0010508214030046'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0010508214030046'


     

    This table displays all metadata directly associated to this object as RDF triples.

    131 TRIPLES      22 PREDICATES      75 URIs      59 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0010508214030046 schema:about anzsrc-for:09
    2 anzsrc-for:0915
    3 schema:author Na32717fdac214384aef1ed9d104a5195
    4 schema:citation sg:pub.10.1007/bf00739859
    5 sg:pub.10.1007/bf02111563
    6 sg:pub.10.1007/s10573-005-0020-4
    7 sg:pub.10.1007/s10573-005-0053-8
    8 sg:pub.10.1007/s10573-005-0076-1
    9 sg:pub.10.1023/a:1012924029736
    10 sg:pub.10.1023/a:1021136126730
    11 sg:pub.10.1023/b:cesw.0000033563.66432.1c
    12 schema:datePublished 2014-05
    13 schema:datePublishedReg 2014-05-01
    14 schema:description A statistical model of combustion of a gas suspension of solid particles is proposed. The model takes into account the influence of the stochastic spatial distribution of particles on the combustion front velocity. The Bose-Einstein distribution in the presentation of occupation numbers is used as the basic mathematical apparatus of the model. The model offers an explanation for the effect observed in some experiments, which is associated with the shift of the combustion front velocity peak to the range of fuel-rich gas suspensions. The limits of applicability of the proposed statistical model to real gas suspensions are estimated.
    15 schema:genre article
    16 schema:inLanguage en
    17 schema:isAccessibleForFree false
    18 schema:isPartOf N281528bd90294841bfef4610d3eff224
    19 N510410e5a76f4478911041a5b6f09751
    20 sg:journal.1049027
    21 schema:keywords Bose-Einstein distribution
    22 account
    23 apparatus
    24 applicability
    25 basic mathematical apparatus
    26 combustion
    27 combustion front propagation
    28 combustion front velocity
    29 combustion front velocity peak
    30 distribution
    31 effect
    32 effect of stochasticity
    33 experiments
    34 explanation
    35 front propagation
    36 front velocity
    37 front velocity peak
    38 fuel-rich gas suspensions
    39 gas suspension
    40 influence
    41 limit
    42 limits of applicability
    43 mathematical apparatus
    44 model
    45 number
    46 occupation numbers
    47 particles
    48 peak
    49 presentation
    50 propagation
    51 range
    52 real gas suspensions
    53 shift
    54 solid particles
    55 spatial distribution
    56 statistical model
    57 stochastic spatial distribution
    58 stochasticity
    59 suspension
    60 velocity
    61 velocity peaks
    62 schema:name Effect of stochasticity of the spatial distribution of particles in a gas suspension on combustion front propagation
    63 schema:pagination 272-281
    64 schema:productId N0393bdbce65343dc8aa0032a48876424
    65 N6aa0f1f69a954a9698b094b817c39b76
    66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023684788
    67 https://doi.org/10.1134/s0010508214030046
    68 schema:sdDatePublished 2021-11-01T18:23
    69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    70 schema:sdPublisher Nb13dd49e357548569f46a589a1e942de
    71 schema:url https://doi.org/10.1134/s0010508214030046
    72 sgo:license sg:explorer/license/
    73 sgo:sdDataset articles
    74 rdf:type schema:ScholarlyArticle
    75 N0393bdbce65343dc8aa0032a48876424 schema:name dimensions_id
    76 schema:value pub.1023684788
    77 rdf:type schema:PropertyValue
    78 N281528bd90294841bfef4610d3eff224 schema:issueNumber 3
    79 rdf:type schema:PublicationIssue
    80 N510410e5a76f4478911041a5b6f09751 schema:volumeNumber 50
    81 rdf:type schema:PublicationVolume
    82 N6aa0f1f69a954a9698b094b817c39b76 schema:name doi
    83 schema:value 10.1134/s0010508214030046
    84 rdf:type schema:PropertyValue
    85 Na32717fdac214384aef1ed9d104a5195 rdf:first sg:person.01037416256.50
    86 rdf:rest rdf:nil
    87 Nb13dd49e357548569f46a589a1e942de schema:name Springer Nature - SN SciGraph project
    88 rdf:type schema:Organization
    89 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
    90 schema:name Engineering
    91 rdf:type schema:DefinedTerm
    92 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
    93 schema:name Interdisciplinary Engineering
    94 rdf:type schema:DefinedTerm
    95 sg:journal.1049027 schema:issn 0010-5082
    96 1573-8345
    97 schema:name Combustion, Explosion, and Shock Waves
    98 schema:publisher Pleiades Publishing
    99 rdf:type schema:Periodical
    100 sg:person.01037416256.50 schema:affiliation grid-institutes:grid.410300.6
    101 schema:familyName Grinchuk
    102 schema:givenName P. S.
    103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50
    104 rdf:type schema:Person
    105 sg:pub.10.1007/bf00739859 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035272023
    106 https://doi.org/10.1007/bf00739859
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/bf02111563 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032780087
    109 https://doi.org/10.1007/bf02111563
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1007/s10573-005-0020-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002677193
    112 https://doi.org/10.1007/s10573-005-0020-4
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/s10573-005-0053-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048649650
    115 https://doi.org/10.1007/s10573-005-0053-8
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1007/s10573-005-0076-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037819779
    118 https://doi.org/10.1007/s10573-005-0076-1
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1023/a:1012924029736 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024689912
    121 https://doi.org/10.1023/a:1012924029736
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1023/a:1021136126730 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034960652
    124 https://doi.org/10.1023/a:1021136126730
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1023/b:cesw.0000033563.66432.1c schema:sameAs https://app.dimensions.ai/details/publication/pub.1021588941
    127 https://doi.org/10.1023/b:cesw.0000033563.66432.1c
    128 rdf:type schema:CreativeWork
    129 grid-institutes:grid.410300.6 schema:alternateName Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, 220072, Minsk, Belarus
    130 schema:name Lykov Institute of Heat and Mass Transfer, National Academy of Sciences of Belarus, 220072, Minsk, Belarus
    131 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...