The Pade–Laplace Extrapolated Approximation of the Multi-Exponential Decay Kinetics of Molecular Fluorescence View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

A. V. Klevanik

ABSTRACT

A method was proposed for multi-exponential approximation of the fluorescence decay kinetics. Unlike the well-known Prony technique, the method is suitable for analyzing large-scale experimental data arrays. The method differs from the Pade–Laplace approximation applied previously in that the Pade coefficients are calculated more accurately. The exponential parameters can be found if the following four conditions are satisfied: (1) there are no more than eight exponentials in the kinetic curve, (2) τa < 0.125T, (3) τi > 4h, and (4) the noise level is kept below a critical value. It is noteworthy that the critical value depends on the sum N of exponentials, i.e., the greater the sum N is, the lower the noise level is. T is the time domain for which the kinetic curve has been measured; h = T/n; n is the number of points that represent the kinetic curve; τa = max (τ1, τ2, …, τN); τi = min (τ1, τ2, …, τN); τk is the time constant for the kth exponential; and k = 1, 2, …, N. More... »

PAGES

915-920

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0006350918060179

DOI

http://dx.doi.org/10.1134/s0006350918060179

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1112433972


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Basic Biological Problems", 
          "id": "https://www.grid.ac/institutes/grid.418820.7", 
          "name": [
            "Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Klevanik", 
        "givenName": "A. V.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0076-6879(95)46016-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006009332"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(93)81325-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006444901"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cphc.200400066", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008028206"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0030-4018(96)00384-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016294281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(79)85236-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018739461"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(75)85817-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027956351"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0377-0427(00)00360-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035973747"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0006-3495(89)82653-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048824957"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0305004100030401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053843559"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tsp.2004.828919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061799237"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1119/1.1927551", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062238858"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/1.9780898719604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098556605"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "A method was proposed for multi-exponential approximation of the fluorescence decay kinetics. Unlike the well-known Prony technique, the method is suitable for analyzing large-scale experimental data arrays. The method differs from the Pade\u2013Laplace approximation applied previously in that the Pade coefficients are calculated more accurately. The exponential parameters can be found if the following four conditions are satisfied: (1) there are no more than eight exponentials in the kinetic curve, (2) \u03c4a < 0.125T, (3) \u03c4i > 4h, and (4) the noise level is kept below a critical value. It is noteworthy that the critical value depends on the sum N of exponentials, i.e., the greater the sum N is, the lower the noise level is. T is the time domain for which the kinetic curve has been measured; h = T/n; n is the number of points that represent the kinetic curve; \u03c4a = max (\u03c41, \u03c42, \u2026, \u03c4N); \u03c4i = min (\u03c41, \u03c42, \u2026, \u03c4N); \u03c4k is the time constant for the kth exponential; and k = 1, 2, \u2026, N.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0006350918060179", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017924", 
        "issn": [
          "0006-3509", 
          "1555-6654"
        ], 
        "name": "Biophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "name": "The Pade\u2013Laplace Extrapolated Approximation of the Multi-Exponential Decay Kinetics of Molecular Fluorescence", 
    "pagination": "915-920", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1e80783845b0f7df66f84755feedb22513dd3324d22738712964bf5355b4e19a"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0006350918060179"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1112433972"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0006350918060179", 
      "https://app.dimensions.ai/details/publication/pub.1112433972"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T10:19", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000348_0000000348/records_54319_00000002.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0006350918060179"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0006350918060179'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0006350918060179'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0006350918060179'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0006350918060179'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0006350918060179 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N3cc73c234b5b49de810ab96427281f86
4 schema:citation https://doi.org/10.1002/cphc.200400066
5 https://doi.org/10.1016/0076-6879(95)46016-0
6 https://doi.org/10.1016/s0006-3495(75)85817-6
7 https://doi.org/10.1016/s0006-3495(79)85236-4
8 https://doi.org/10.1016/s0006-3495(89)82653-0
9 https://doi.org/10.1016/s0006-3495(93)81325-0
10 https://doi.org/10.1016/s0030-4018(96)00384-7
11 https://doi.org/10.1016/s0377-0427(00)00360-5
12 https://doi.org/10.1017/s0305004100030401
13 https://doi.org/10.1109/tsp.2004.828919
14 https://doi.org/10.1119/1.1927551
15 https://doi.org/10.1137/1.9780898719604
16 schema:datePublished 2018-11
17 schema:datePublishedReg 2018-11-01
18 schema:description A method was proposed for multi-exponential approximation of the fluorescence decay kinetics. Unlike the well-known Prony technique, the method is suitable for analyzing large-scale experimental data arrays. The method differs from the Pade–Laplace approximation applied previously in that the Pade coefficients are calculated more accurately. The exponential parameters can be found if the following four conditions are satisfied: (1) there are no more than eight exponentials in the kinetic curve, (2) τa < 0.125T, (3) τi > 4h, and (4) the noise level is kept below a critical value. It is noteworthy that the critical value depends on the sum N of exponentials, i.e., the greater the sum N is, the lower the noise level is. T is the time domain for which the kinetic curve has been measured; h = T/n; n is the number of points that represent the kinetic curve; τa = max (τ1, τ2, …, τN); τi = min (τ1, τ2, …, τN); τk is the time constant for the kth exponential; and k = 1, 2, …, N.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N35a836a80dce47fbbceee467e078f3b5
23 N72152cd9b5a94ca59d923c0a188b1157
24 sg:journal.1017924
25 schema:name The Pade–Laplace Extrapolated Approximation of the Multi-Exponential Decay Kinetics of Molecular Fluorescence
26 schema:pagination 915-920
27 schema:productId N0d4fb0d78f974cf188c115f3c9f6a360
28 N4466bf51b91a465eadfbd416d5edf3e2
29 Nf9f3f4b894e94b40aa9708b242b661ee
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112433972
31 https://doi.org/10.1134/s0006350918060179
32 schema:sdDatePublished 2019-04-11T10:19
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nc7dd09cef591483796fd1029805995f9
35 schema:url https://link.springer.com/10.1134%2FS0006350918060179
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0d4fb0d78f974cf188c115f3c9f6a360 schema:name dimensions_id
40 schema:value pub.1112433972
41 rdf:type schema:PropertyValue
42 N35a836a80dce47fbbceee467e078f3b5 schema:issueNumber 6
43 rdf:type schema:PublicationIssue
44 N3cc73c234b5b49de810ab96427281f86 rdf:first N49ecc88116d043d99fcddb25765b4047
45 rdf:rest rdf:nil
46 N4466bf51b91a465eadfbd416d5edf3e2 schema:name doi
47 schema:value 10.1134/s0006350918060179
48 rdf:type schema:PropertyValue
49 N49ecc88116d043d99fcddb25765b4047 schema:affiliation https://www.grid.ac/institutes/grid.418820.7
50 schema:familyName Klevanik
51 schema:givenName A. V.
52 rdf:type schema:Person
53 N72152cd9b5a94ca59d923c0a188b1157 schema:volumeNumber 63
54 rdf:type schema:PublicationVolume
55 Nc7dd09cef591483796fd1029805995f9 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nf9f3f4b894e94b40aa9708b242b661ee schema:name readcube_id
58 schema:value 1e80783845b0f7df66f84755feedb22513dd3324d22738712964bf5355b4e19a
59 rdf:type schema:PropertyValue
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
64 schema:name Artificial Intelligence and Image Processing
65 rdf:type schema:DefinedTerm
66 sg:journal.1017924 schema:issn 0006-3509
67 1555-6654
68 schema:name Biophysics
69 rdf:type schema:Periodical
70 https://doi.org/10.1002/cphc.200400066 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008028206
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1016/0076-6879(95)46016-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006009332
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1016/s0006-3495(75)85817-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027956351
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1016/s0006-3495(79)85236-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018739461
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1016/s0006-3495(89)82653-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048824957
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/s0006-3495(93)81325-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006444901
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1016/s0030-4018(96)00384-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016294281
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0377-0427(00)00360-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035973747
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1017/s0305004100030401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053843559
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1109/tsp.2004.828919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061799237
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1119/1.1927551 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062238858
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1137/1.9780898719604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098556605
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.418820.7 schema:alternateName Institute of Basic Biological Problems
95 schema:name Institute of Basic Biological Problems, Russian Academy of Sciences, 142290, Pushchino, Moscow oblast, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...