A modified mathematical model of the anatomy of the cardiac left ventricle View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-09

AUTHORS

A. A. Koshelev, A. E. Bazhutina, S. F. Pravdin, K. S. Ushenin, L. B. Katsnelson, O. E. Solovyova

ABSTRACT

A modification of the mathematical model of the shape and fiber direction field of the left cardiac ventricle is presented. The model was developed based on the idea of nested spiral surfaces. The ventricle is composed of surfaces that model myocardial layers. Each layer is filled with curves corresponding to myocardial fibers. The tangents to these curves form the myofiber direction field. A modified spherical coordinate system is linked with the model left ventricle, where the ventricular boundaries are coordinate surfaces. The model is based on echocardiographic, computed-tomography, or magnetic-resonance-imaging data. For this purpose, four-chamber and two-chamber echocardiography views or sections along the long axis of the left ventricle from these tomographic data in several positions are approximated with a model profile. To construct a 3D model, we then interpolate model parameters by periodic cubic splines and the vector field of the tangents to the model fibers is calculated. For verification of the model, we used diffusion-tensor magneticresonance-imaging data of the human heart. More... »

PAGES

785-792

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0006350916050134

DOI

http://dx.doi.org/10.1134/s0006350916050134

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029263142


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0903", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biomedical Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia", 
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof\u2019i Kovalevskoi 16, 620990, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Koshelev", 
        "givenName": "A. A.", 
        "id": "sg:person.014755176575.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755176575.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ural Federal University", 
          "id": "https://www.grid.ac/institutes/grid.412761.7", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bazhutina", 
        "givenName": "A. E.", 
        "id": "sg:person.012034271307.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034271307.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia", 
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof\u2019i Kovalevskoi 16, 620990, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pravdin", 
        "givenName": "S. F.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Immunology and Physiology", 
          "id": "https://www.grid.ac/institutes/grid.473278.d", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia", 
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof\u2019i Kovalevskoi 16, 620990, Yekaterinburg, Russia", 
            "Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 106, 620041, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ushenin", 
        "givenName": "K. S.", 
        "id": "sg:person.013430350775.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430350775.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia", 
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof\u2019i Kovalevskoi 16, 620990, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Katsnelson", 
        "givenName": "L. B.", 
        "id": "sg:person.0704107055.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704107055.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Immunology and Physiology", 
          "id": "https://www.grid.ac/institutes/grid.473278.d", 
          "name": [
            "Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia", 
            "Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof\u2019i Kovalevskoi 16, 620990, Yekaterinburg, Russia", 
            "Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 106, 620041, Yekaterinburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Solovyova", 
        "givenName": "O. E.", 
        "id": "sg:person.01304206260.68", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304206260.68"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/mrm.20622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003065260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/mrm.20622", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003065260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-009-0434-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005358700", 
          "https://doi.org/10.1007/s00466-009-0434-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-009-0434-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005358700", 
          "https://doi.org/10.1007/s00466-009-0434-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00466-009-0434-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005358700", 
          "https://doi.org/10.1007/s00466-009-0434-z"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1341.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005555868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1196/annals.1341.026", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005555868"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10439-012-0593-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017408949", 
          "https://doi.org/10.1007/s10439-012-0593-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1152/ajpheart.00606.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028076993"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10237-010-0235-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032580362", 
          "https://doi.org/10.1007/s10237-010-0235-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034047488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034047488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1038/msb.2009.51", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034047488"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037114869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/nme.2579", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037114869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1113/expphysiol.2003.026740", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039860207"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1371/journal.pone.0093617", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040070211"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1161/01.res.55.3.358", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041701882"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045991148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.media.2012.06.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045991148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.pbiomolbio.2011.06.014", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046680902"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/mc.2006.392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061387733"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-09", 
    "datePublishedReg": "2016-09-01", 
    "description": "A modification of the mathematical model of the shape and fiber direction field of the left cardiac ventricle is presented. The model was developed based on the idea of nested spiral surfaces. The ventricle is composed of surfaces that model myocardial layers. Each layer is filled with curves corresponding to myocardial fibers. The tangents to these curves form the myofiber direction field. A modified spherical coordinate system is linked with the model left ventricle, where the ventricular boundaries are coordinate surfaces. The model is based on echocardiographic, computed-tomography, or magnetic-resonance-imaging data. For this purpose, four-chamber and two-chamber echocardiography views or sections along the long axis of the left ventricle from these tomographic data in several positions are approximated with a model profile. To construct a 3D model, we then interpolate model parameters by periodic cubic splines and the vector field of the tangents to the model fibers is calculated. For verification of the model, we used diffusion-tensor magneticresonance-imaging data of the human heart.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0006350916050134", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1017924", 
        "issn": [
          "0006-3509", 
          "1555-6654"
        ], 
        "name": "Biophysics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "61"
      }
    ], 
    "name": "A modified mathematical model of the anatomy of the cardiac left ventricle", 
    "pagination": "785-792", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b67fe2f1494b56e3e8b3aca6e177c59eb6ee5d636c6befe9b4f67704c8aa38b"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0006350916050134"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029263142"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0006350916050134", 
      "https://app.dimensions.ai/details/publication/pub.1029263142"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:11", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88253_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0006350916050134"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0006350916050134'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0006350916050134'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0006350916050134'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0006350916050134'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0006350916050134 schema:about anzsrc-for:09
2 anzsrc-for:0903
3 schema:author N3b27a5ce820f48f48dd7862ac7ca35e5
4 schema:citation sg:pub.10.1007/s00466-009-0434-z
5 sg:pub.10.1007/s10237-010-0235-5
6 sg:pub.10.1007/s10439-012-0593-5
7 https://doi.org/10.1002/mrm.20622
8 https://doi.org/10.1002/nme.2579
9 https://doi.org/10.1016/j.media.2012.06.005
10 https://doi.org/10.1016/j.pbiomolbio.2011.06.014
11 https://doi.org/10.1038/msb.2009.51
12 https://doi.org/10.1109/mc.2006.392
13 https://doi.org/10.1113/expphysiol.2003.026740
14 https://doi.org/10.1152/ajpheart.00606.2009
15 https://doi.org/10.1161/01.res.55.3.358
16 https://doi.org/10.1196/annals.1341.026
17 https://doi.org/10.1371/journal.pone.0093617
18 schema:datePublished 2016-09
19 schema:datePublishedReg 2016-09-01
20 schema:description A modification of the mathematical model of the shape and fiber direction field of the left cardiac ventricle is presented. The model was developed based on the idea of nested spiral surfaces. The ventricle is composed of surfaces that model myocardial layers. Each layer is filled with curves corresponding to myocardial fibers. The tangents to these curves form the myofiber direction field. A modified spherical coordinate system is linked with the model left ventricle, where the ventricular boundaries are coordinate surfaces. The model is based on echocardiographic, computed-tomography, or magnetic-resonance-imaging data. For this purpose, four-chamber and two-chamber echocardiography views or sections along the long axis of the left ventricle from these tomographic data in several positions are approximated with a model profile. To construct a 3D model, we then interpolate model parameters by periodic cubic splines and the vector field of the tangents to the model fibers is calculated. For verification of the model, we used diffusion-tensor magneticresonance-imaging data of the human heart.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N34987273b38d4fbeb70e20c21e0e8b96
25 Nef6857f881f040649f546004da6f7e65
26 sg:journal.1017924
27 schema:name A modified mathematical model of the anatomy of the cardiac left ventricle
28 schema:pagination 785-792
29 schema:productId N19c739030b47453dab59bd4e25dae9b3
30 N1e8a0cc1c95e40fab2e7352f4fbf2beb
31 Ndadde4328e3741e290b0bc0915961c30
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029263142
33 https://doi.org/10.1134/s0006350916050134
34 schema:sdDatePublished 2019-04-11T13:11
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher Nb1dd1f9faae74063ad4f7b818e290c8d
37 schema:url https://link.springer.com/10.1134%2FS0006350916050134
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0335e8db01984a90a60bbd2b44259eab rdf:first N4a592f8c4ca9449f99f416f770b97f28
42 rdf:rest N2d51c4763b3b4906a3293e3f0db742cb
43 N19c739030b47453dab59bd4e25dae9b3 schema:name doi
44 schema:value 10.1134/s0006350916050134
45 rdf:type schema:PropertyValue
46 N1e8a0cc1c95e40fab2e7352f4fbf2beb schema:name dimensions_id
47 schema:value pub.1029263142
48 rdf:type schema:PropertyValue
49 N2b07abdf466b44bb9e9275dc6c876d56 rdf:first sg:person.01304206260.68
50 rdf:rest rdf:nil
51 N2d51c4763b3b4906a3293e3f0db742cb rdf:first sg:person.013430350775.16
52 rdf:rest Nf110aaf7530349008a353076b538fbb0
53 N34987273b38d4fbeb70e20c21e0e8b96 schema:issueNumber 5
54 rdf:type schema:PublicationIssue
55 N3b27a5ce820f48f48dd7862ac7ca35e5 rdf:first sg:person.014755176575.28
56 rdf:rest Nde0acac978d9462883a77228178a4c9b
57 N4a592f8c4ca9449f99f416f770b97f28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
58 schema:familyName Pravdin
59 schema:givenName S. F.
60 rdf:type schema:Person
61 Nb1dd1f9faae74063ad4f7b818e290c8d schema:name Springer Nature - SN SciGraph project
62 rdf:type schema:Organization
63 Ndadde4328e3741e290b0bc0915961c30 schema:name readcube_id
64 schema:value 8b67fe2f1494b56e3e8b3aca6e177c59eb6ee5d636c6befe9b4f67704c8aa38b
65 rdf:type schema:PropertyValue
66 Nde0acac978d9462883a77228178a4c9b rdf:first sg:person.012034271307.63
67 rdf:rest N0335e8db01984a90a60bbd2b44259eab
68 Nef6857f881f040649f546004da6f7e65 schema:volumeNumber 61
69 rdf:type schema:PublicationVolume
70 Nf110aaf7530349008a353076b538fbb0 rdf:first sg:person.0704107055.63
71 rdf:rest N2b07abdf466b44bb9e9275dc6c876d56
72 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
73 schema:name Engineering
74 rdf:type schema:DefinedTerm
75 anzsrc-for:0903 schema:inDefinedTermSet anzsrc-for:
76 schema:name Biomedical Engineering
77 rdf:type schema:DefinedTerm
78 sg:journal.1017924 schema:issn 0006-3509
79 1555-6654
80 schema:name Biophysics
81 rdf:type schema:Periodical
82 sg:person.012034271307.63 schema:affiliation https://www.grid.ac/institutes/grid.412761.7
83 schema:familyName Bazhutina
84 schema:givenName A. E.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012034271307.63
86 rdf:type schema:Person
87 sg:person.01304206260.68 schema:affiliation https://www.grid.ac/institutes/grid.473278.d
88 schema:familyName Solovyova
89 schema:givenName O. E.
90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01304206260.68
91 rdf:type schema:Person
92 sg:person.013430350775.16 schema:affiliation https://www.grid.ac/institutes/grid.473278.d
93 schema:familyName Ushenin
94 schema:givenName K. S.
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013430350775.16
96 rdf:type schema:Person
97 sg:person.014755176575.28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
98 schema:familyName Koshelev
99 schema:givenName A. A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014755176575.28
101 rdf:type schema:Person
102 sg:person.0704107055.63 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
103 schema:familyName Katsnelson
104 schema:givenName L. B.
105 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704107055.63
106 rdf:type schema:Person
107 sg:pub.10.1007/s00466-009-0434-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1005358700
108 https://doi.org/10.1007/s00466-009-0434-z
109 rdf:type schema:CreativeWork
110 sg:pub.10.1007/s10237-010-0235-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032580362
111 https://doi.org/10.1007/s10237-010-0235-5
112 rdf:type schema:CreativeWork
113 sg:pub.10.1007/s10439-012-0593-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017408949
114 https://doi.org/10.1007/s10439-012-0593-5
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1002/mrm.20622 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003065260
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1002/nme.2579 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037114869
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1016/j.media.2012.06.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045991148
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1016/j.pbiomolbio.2011.06.014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046680902
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1038/msb.2009.51 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034047488
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1109/mc.2006.392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061387733
127 rdf:type schema:CreativeWork
128 https://doi.org/10.1113/expphysiol.2003.026740 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039860207
129 rdf:type schema:CreativeWork
130 https://doi.org/10.1152/ajpheart.00606.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028076993
131 rdf:type schema:CreativeWork
132 https://doi.org/10.1161/01.res.55.3.358 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041701882
133 rdf:type schema:CreativeWork
134 https://doi.org/10.1196/annals.1341.026 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005555868
135 rdf:type schema:CreativeWork
136 https://doi.org/10.1371/journal.pone.0093617 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040070211
137 rdf:type schema:CreativeWork
138 https://www.grid.ac/institutes/grid.412761.7 schema:alternateName Ural Federal University
139 schema:name Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia
140 rdf:type schema:Organization
141 https://www.grid.ac/institutes/grid.473278.d schema:alternateName Institute of Immunology and Physiology
142 schema:name Institute of Immunology and Physiology, Ural Branch, Russian Academy of Sciences, ul. Pervomaiskaya 106, 620041, Yekaterinburg, Russia
143 Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof’i Kovalevskoi 16, 620990, Yekaterinburg, Russia
144 Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
147 schema:name Krasovskii Institute of Mathematics and Mechanics, Ural Branch, Russian Academy of Sciences, ul. Sof’i Kovalevskoi 16, 620990, Yekaterinburg, Russia
148 Ural Federal University named after the first President of Russia B.N. Yeltsin, ul. Mira 19, 620002, Yekaterinburg, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...