Identification of latent periodicity in amino acid sequences of protein families View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01

AUTHORS

V. P. Turutina, A. A. Laskin, N. A. Kudryashov, K. G. Skryabin, E. V. Korotkov

ABSTRACT

For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed. More... »

PAGES

18-31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0006297906010032

DOI

http://dx.doi.org/10.1134/s0006297906010032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029780521

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16457614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turutina", 
        "givenName": "V. P.", 
        "id": "sg:person.01342115025.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342115025.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laskin", 
        "givenName": "A. A.", 
        "id": "sg:person.01276653270.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276653270.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashov", 
        "givenName": "N. A.", 
        "id": "sg:person.012776467321.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776467321.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skryabin", 
        "givenName": "K. G.", 
        "id": "sg:person.01204515525.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204515525.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia", 
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korotkov", 
        "givenName": "E. V.", 
        "id": "sg:person.01274151123.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0959-440x(98)80068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000262447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-86659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006433795", 
          "https://doi.org/10.1007/978-3-642-86659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-86659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006433795", 
          "https://doi.org/10.1007/978-3-642-86659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006849282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s008940050122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007337251", 
          "https://doi.org/10.1007/s008940050122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(00)01643-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009426549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009870827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025139427862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017183923", 
          "https://doi.org/10.1023/a:1025139427862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.15.8580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017913465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02759556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018599264", 
          "https://doi.org/10.1007/bf02759556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/279069.279102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/279069.279102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021680518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.6.498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2000.2127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025368249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034260048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034838417", 
          "https://doi.org/10.1007/bf02104737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034838417", 
          "https://doi.org/10.1007/bf02104737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.2.573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035372973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/6.3.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039190731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.6.1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039572381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1042517031000064457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040869714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.3136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042495205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7152-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042788799", 
          "https://doi.org/10.1007/978-1-4419-7152-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.18.3570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043692937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.2001.4392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044174046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/12.1.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046180149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.11.3391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050138811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/3.3.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050171782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.2000.2112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051554638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024231109360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064279", 
          "https://doi.org/10.1023/a:1024231109360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100114a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055653529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701300099038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3289117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1998.5.493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111239204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0006297906010032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297322", 
        "issn": [
          "0006-2979", 
          "1608-3040"
        ], 
        "name": "Biochemistry (Moscow)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Identification of latent periodicity in amino acid sequences of protein families", 
    "pagination": "18-31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8dde96c7f0bdb3540f11f01f93f4eb035cb8c3871f3a9ea11b5255b5eddd24e7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16457614"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0376536"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0006297906010032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029780521"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0006297906010032", 
      "https://app.dimensions.ai/details/publication/pub.1029780521"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS0006297906010032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      76 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0006297906010032 schema:about N0b90e73bec8f49f1a35fc2741c497631
2 N0c3e956fa72e42d88345b621d5f3515d
3 N4e8f488e37ba4adb941dfd5e163d4fa5
4 N74c03e14addd40468ba63e3b5496ed0f
5 N77f17c1bacf646ad830f62e82af72459
6 N7f51e48afb5c42c6bb4766654e5b0665
7 N8018213fba6349c4b651b5d7dbf596d6
8 Nbe3c6e6ab27c46f09a6703840d4f175e
9 Nc64e70451d33456fab0499d9cf206cd8
10 Nf7707a0c845149f980084ab996fb42ca
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N494e798d8be3473bbc0d653950412efd
14 schema:citation sg:pub.10.1007/978-1-4419-7152-4_14
15 sg:pub.10.1007/978-3-642-86659-3
16 sg:pub.10.1007/bf02104737
17 sg:pub.10.1007/bf02759556
18 sg:pub.10.1007/s008940050122
19 sg:pub.10.1023/a:1024231109360
20 sg:pub.10.1023/a:1025139427862
21 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z
22 https://doi.org/10.1002/prot.20202
23 https://doi.org/10.1002/prot.340170108
24 https://doi.org/10.1002/prot.340170407
25 https://doi.org/10.1006/bbrc.2000.2112
26 https://doi.org/10.1006/jmbi.1999.3136
27 https://doi.org/10.1006/jmbi.2000.3684
28 https://doi.org/10.1006/jmbi.2000.3786
29 https://doi.org/10.1006/jsbi.2001.4392
30 https://doi.org/10.1006/jtbi.2000.2127
31 https://doi.org/10.1016/s0375-9601(03)00641-8
32 https://doi.org/10.1016/s0959-440x(98)80068-7
33 https://doi.org/10.1016/s0968-0004(00)01643-1
34 https://doi.org/10.1021/j100114a028
35 https://doi.org/10.1073/pnas.80.11.3391
36 https://doi.org/10.1073/pnas.95.15.8580
37 https://doi.org/10.1080/1042517031000064457
38 https://doi.org/10.1089/106652701300099038
39 https://doi.org/10.1089/cmb.1998.5.493
40 https://doi.org/10.1093/bioinformatics/12.1.49
41 https://doi.org/10.1093/bioinformatics/13.1.37
42 https://doi.org/10.1093/bioinformatics/14.6.498
43 https://doi.org/10.1093/dnares/3.3.157
44 https://doi.org/10.1093/dnares/6.3.153
45 https://doi.org/10.1093/nar/27.2.573
46 https://doi.org/10.1093/nar/28.18.3570
47 https://doi.org/10.1093/nar/gkh121
48 https://doi.org/10.1110/ps.9.6.1203
49 https://doi.org/10.1126/science.3289117
50 https://doi.org/10.1145/279069.279102
51 schema:datePublished 2006-01
52 schema:datePublishedReg 2006-01-01
53 schema:description For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N20d028e34b2147f5a858587a3a4821d1
58 N9c680619f0384e0996f07433ed7a6d02
59 sg:journal.1297322
60 schema:name Identification of latent periodicity in amino acid sequences of protein families
61 schema:pagination 18-31
62 schema:productId N0ee4499412194055adcc27ad33e32247
63 N13e1ee03eff94feba3bb104a0e85ebc2
64 N910ff2c3dd45402c89251650964b3bb5
65 Ne92489da35774973a10800776670c20c
66 Nec2ae2055ab8476187093cf35457cfbf
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029780521
68 https://doi.org/10.1134/s0006297906010032
69 schema:sdDatePublished 2019-04-11T12:54
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher N488249ba0720411ab32debad28976f62
72 schema:url http://link.springer.com/10.1134%2FS0006297906010032
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N0b90e73bec8f49f1a35fc2741c497631 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Evolution, Molecular
78 rdf:type schema:DefinedTerm
79 N0c3e956fa72e42d88345b621d5f3515d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
80 schema:name Amino Acid Sequence
81 rdf:type schema:DefinedTerm
82 N0d4f83adbc9841e9a6662d03af62f250 rdf:first sg:person.01274151123.51
83 rdf:rest rdf:nil
84 N0e272244dc6d44e9bfd1fbdb49f6acc4 rdf:first sg:person.012776467321.17
85 rdf:rest N7598997093804dc1b8f607fad18a2d0f
86 N0ee4499412194055adcc27ad33e32247 schema:name doi
87 schema:value 10.1134/s0006297906010032
88 rdf:type schema:PropertyValue
89 N13e1ee03eff94feba3bb104a0e85ebc2 schema:name dimensions_id
90 schema:value pub.1029780521
91 rdf:type schema:PropertyValue
92 N19d7e53e6c0749328cd110b40d20a7bf schema:name Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
93 rdf:type schema:Organization
94 N20d028e34b2147f5a858587a3a4821d1 schema:volumeNumber 71
95 rdf:type schema:PublicationVolume
96 N488249ba0720411ab32debad28976f62 schema:name Springer Nature - SN SciGraph project
97 rdf:type schema:Organization
98 N494e798d8be3473bbc0d653950412efd rdf:first sg:person.01342115025.07
99 rdf:rest Nfb0b9f4915774822969c709f0f8fbb86
100 N4e8f488e37ba4adb941dfd5e163d4fa5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Algorithms
102 rdf:type schema:DefinedTerm
103 N6cb7de8f82814f2d9c31970818be809d schema:name Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
104 rdf:type schema:Organization
105 N74c03e14addd40468ba63e3b5496ed0f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Sequence Alignment
107 rdf:type schema:DefinedTerm
108 N7598997093804dc1b8f607fad18a2d0f rdf:first sg:person.01204515525.15
109 rdf:rest N0d4f83adbc9841e9a6662d03af62f250
110 N77f17c1bacf646ad830f62e82af72459 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Molecular Sequence Data
112 rdf:type schema:DefinedTerm
113 N7f51e48afb5c42c6bb4766654e5b0665 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
114 schema:name Animals
115 rdf:type schema:DefinedTerm
116 N8018213fba6349c4b651b5d7dbf596d6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Proteins
118 rdf:type schema:DefinedTerm
119 N910ff2c3dd45402c89251650964b3bb5 schema:name pubmed_id
120 schema:value 16457614
121 rdf:type schema:PropertyValue
122 N9c680619f0384e0996f07433ed7a6d02 schema:issueNumber 1
123 rdf:type schema:PublicationIssue
124 Nbe3c6e6ab27c46f09a6703840d4f175e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
125 schema:name Computational Biology
126 rdf:type schema:DefinedTerm
127 Nc64e70451d33456fab0499d9cf206cd8 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
128 schema:name Sequence Analysis, Protein
129 rdf:type schema:DefinedTerm
130 Ne92489da35774973a10800776670c20c schema:name readcube_id
131 schema:value 8dde96c7f0bdb3540f11f01f93f4eb035cb8c3871f3a9ea11b5255b5eddd24e7
132 rdf:type schema:PropertyValue
133 Nec2ae2055ab8476187093cf35457cfbf schema:name nlm_unique_id
134 schema:value 0376536
135 rdf:type schema:PropertyValue
136 Nf7707a0c845149f980084ab996fb42ca schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
137 schema:name Amino Acid Motifs
138 rdf:type schema:DefinedTerm
139 Nfb0b9f4915774822969c709f0f8fbb86 rdf:first sg:person.01276653270.29
140 rdf:rest N0e272244dc6d44e9bfd1fbdb49f6acc4
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biochemistry and Cell Biology
146 rdf:type schema:DefinedTerm
147 sg:journal.1297322 schema:issn 0006-2979
148 1608-3040
149 schema:name Biochemistry (Moscow)
150 rdf:type schema:Periodical
151 sg:person.01204515525.15 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
152 schema:familyName Skryabin
153 schema:givenName K. G.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204515525.15
155 rdf:type schema:Person
156 sg:person.01274151123.51 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
157 schema:familyName Korotkov
158 schema:givenName E. V.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51
160 rdf:type schema:Person
161 sg:person.01276653270.29 schema:affiliation N19d7e53e6c0749328cd110b40d20a7bf
162 schema:familyName Laskin
163 schema:givenName A. A.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276653270.29
165 rdf:type schema:Person
166 sg:person.012776467321.17 schema:affiliation N6cb7de8f82814f2d9c31970818be809d
167 schema:familyName Kudryashov
168 schema:givenName N. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776467321.17
170 rdf:type schema:Person
171 sg:person.01342115025.07 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
172 schema:familyName Turutina
173 schema:givenName V. P.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342115025.07
175 rdf:type schema:Person
176 sg:pub.10.1007/978-1-4419-7152-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042788799
177 https://doi.org/10.1007/978-1-4419-7152-4_14
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/978-3-642-86659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433795
180 https://doi.org/10.1007/978-3-642-86659-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf02104737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034838417
183 https://doi.org/10.1007/bf02104737
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf02759556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018599264
186 https://doi.org/10.1007/bf02759556
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s008940050122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007337251
189 https://doi.org/10.1007/s008940050122
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/a:1024231109360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064279
192 https://doi.org/10.1023/a:1024231109360
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/a:1025139427862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017183923
195 https://doi.org/10.1023/a:1025139427862
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009870827
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/prot.20202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005455151
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/prot.340170108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229509
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/prot.340170407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503520
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1006/bbrc.2000.2112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554638
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1006/jmbi.1999.3136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042495205
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/jmbi.2000.3684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021680518
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1006/jmbi.2000.3786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034260048
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1006/jsbi.2001.4392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044174046
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1006/jtbi.2000.2127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025368249
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0375-9601(03)00641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343633
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0959-440x(98)80068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000262447
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0968-0004(00)01643-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009426549
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/j100114a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055653529
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.80.11.3391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050138811
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.95.15.8580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017913465
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1080/1042517031000064457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040869714
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1089/106652701300099038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204869
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1089/cmb.1998.5.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111239204
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/12.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046180149
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/13.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006849282
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/14.6.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965641
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/dnares/3.3.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171782
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/dnares/6.3.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190731
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/27.2.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035372973
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/28.18.3570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043692937
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gkh121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020798638
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1110/ps.9.6.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039572381
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.3289117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604312
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1145/279069.279102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320282
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.482762.d schema:alternateName Bioengineering Center
258 schema:name Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia
259 Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...