Ontology type: schema:ScholarlyArticle
2006-01
AUTHORSV. P. Turutina, A. A. Laskin, N. A. Kudryashov, K. G. Skryabin, E. V. Korotkov
ABSTRACTFor detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed. More... »
PAGES18-31
http://scigraph.springernature.com/pub.10.1134/s0006297906010032
DOIhttp://dx.doi.org/10.1134/s0006297906010032
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1029780521
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/16457614
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Algorithms",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Acid Motifs",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Amino Acid Sequence",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Computational Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Evolution, Molecular",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Molecular Sequence Data",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Alignment",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Sequence Analysis, Protein",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Bioengineering Center",
"id": "https://www.grid.ac/institutes/grid.482762.d",
"name": [
"Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Turutina",
"givenName": "V. P.",
"id": "sg:person.01342115025.07",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342115025.07"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Laskin",
"givenName": "A. A.",
"id": "sg:person.01276653270.29",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276653270.29"
],
"type": "Person"
},
{
"affiliation": {
"name": [
"Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Kudryashov",
"givenName": "N. A.",
"id": "sg:person.012776467321.17",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776467321.17"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bioengineering Center",
"id": "https://www.grid.ac/institutes/grid.482762.d",
"name": [
"Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Skryabin",
"givenName": "K. G.",
"id": "sg:person.01204515525.15",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204515525.15"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Bioengineering Center",
"id": "https://www.grid.ac/institutes/grid.482762.d",
"name": [
"Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia",
"Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Korotkov",
"givenName": "E. V.",
"id": "sg:person.01274151123.51",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1016/s0959-440x(98)80068-7",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1000262447"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0375-9601(03)00641-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004343633"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0375-9601(03)00641-8",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1004343633"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/prot.20202",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1005455151"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-86659-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006433795",
"https://doi.org/10.1007/978-3-642-86659-3"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-3-642-86659-3",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006433795",
"https://doi.org/10.1007/978-3-642-86659-3"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/13.1.37",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1006849282"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/s008940050122",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1007337251",
"https://doi.org/10.1007/s008940050122"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0968-0004(00)01643-1",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009426549"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1009870827"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/prot.340170108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016229509"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/prot.340170108",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016229509"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1025139427862",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017183923",
"https://doi.org/10.1023/a:1025139427862"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.95.15.8580",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1017913465"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02759556",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018599264",
"https://doi.org/10.1007/bf02759556"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/279069.279102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020320282"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1145/279069.279102",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020320282"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/gkh121",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1020798638"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmbi.2000.3684",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021680518"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/14.6.498",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1024965641"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jtbi.2000.2127",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1025368249"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmbi.2000.3786",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034260048"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02104737",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034838417",
"https://doi.org/10.1007/bf02104737"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf02104737",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1034838417",
"https://doi.org/10.1007/bf02104737"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/27.2.573",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1035372973"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/dnares/6.3.153",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039190731"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1110/ps.9.6.1203",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1039572381"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1080/1042517031000064457",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1040869714"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jmbi.1999.3136",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042495205"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/978-1-4419-7152-4_14",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1042788799",
"https://doi.org/10.1007/978-1-4419-7152-4_14"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/nar/28.18.3570",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1043692937"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/jsbi.2001.4392",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1044174046"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/bioinformatics/12.1.49",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046180149"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1073/pnas.80.11.3391",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050138811"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1093/dnares/3.3.157",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1050171782"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1006/bbrc.2000.2112",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1051554638"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1023/a:1024231109360",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052064279",
"https://doi.org/10.1023/a:1024231109360"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/prot.340170407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052503520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1002/prot.340170407",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1052503520"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1021/j100114a028",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1055653529"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1089/106652701300099038",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1059204869"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1126/science.3289117",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1062604312"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1089/cmb.1998.5.493",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1111239204"
],
"type": "CreativeWork"
}
],
"datePublished": "2006-01",
"datePublishedReg": "2006-01-01",
"description": "For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.",
"genre": "research_article",
"id": "sg:pub.10.1134/s0006297906010032",
"inLanguage": [
"en"
],
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1297322",
"issn": [
"0006-2979",
"1608-3040"
],
"name": "Biochemistry (Moscow)",
"type": "Periodical"
},
{
"issueNumber": "1",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "71"
}
],
"name": "Identification of latent periodicity in amino acid sequences of protein families",
"pagination": "18-31",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"8dde96c7f0bdb3540f11f01f93f4eb035cb8c3871f3a9ea11b5255b5eddd24e7"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"16457614"
]
},
{
"name": "nlm_unique_id",
"type": "PropertyValue",
"value": [
"0376536"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/s0006297906010032"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1029780521"
]
}
],
"sameAs": [
"https://doi.org/10.1134/s0006297906010032",
"https://app.dimensions.ai/details/publication/pub.1029780521"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T12:54",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000000.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1134%2FS0006297906010032"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'
This table displays all metadata directly associated to this object as RDF triples.
260 TRIPLES
21 PREDICATES
76 URIs
31 LITERALS
19 BLANK NODES