Identification of latent periodicity in amino acid sequences of protein families View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2006-01

AUTHORS

V. P. Turutina, A. A. Laskin, N. A. Kudryashov, K. G. Skryabin, E. V. Korotkov

ABSTRACT

For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed. More... »

PAGES

18-31

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0006297906010032

DOI

http://dx.doi.org/10.1134/s0006297906010032

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029780521

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16457614


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Algorithms", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Motifs", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Amino Acid Sequence", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computational Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Evolution, Molecular", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Molecular Sequence Data", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Alignment", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Sequence Analysis, Protein", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Turutina", 
        "givenName": "V. P.", 
        "id": "sg:person.01342115025.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342115025.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Laskin", 
        "givenName": "A. A.", 
        "id": "sg:person.01276653270.29", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276653270.29"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kudryashov", 
        "givenName": "N. A.", 
        "id": "sg:person.012776467321.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776467321.17"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Skryabin", 
        "givenName": "K. G.", 
        "id": "sg:person.01204515525.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204515525.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Bioengineering Center", 
          "id": "https://www.grid.ac/institutes/grid.482762.d", 
          "name": [
            "Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia", 
            "Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korotkov", 
        "givenName": "E. V.", 
        "id": "sg:person.01274151123.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0959-440x(98)80068-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000262447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(03)00641-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004343633"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.20202", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005455151"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-86659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006433795", 
          "https://doi.org/10.1007/978-3-642-86659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-86659-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006433795", 
          "https://doi.org/10.1007/978-3-642-86659-3"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/13.1.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006849282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s008940050122", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007337251", 
          "https://doi.org/10.1007/s008940050122"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0968-0004(00)01643-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009426549"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009870827"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170108", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016229509"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1025139427862", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017183923", 
          "https://doi.org/10.1023/a:1025139427862"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.15.8580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017913465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02759556", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018599264", 
          "https://doi.org/10.1007/bf02759556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/279069.279102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/279069.279102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020320282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkh121", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020798638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021680518"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/14.6.498", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024965641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2000.2127", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025368249"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.2000.3786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034260048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034838417", 
          "https://doi.org/10.1007/bf02104737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf02104737", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034838417", 
          "https://doi.org/10.1007/bf02104737"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/27.2.573", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035372973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/6.3.153", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039190731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1110/ps.9.6.1203", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039572381"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/1042517031000064457", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040869714"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jmbi.1999.3136", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042495205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4419-7152-4_14", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042788799", 
          "https://doi.org/10.1007/978-1-4419-7152-4_14"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.18.3570", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043692937"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jsbi.2001.4392", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044174046"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/12.1.49", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046180149"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.80.11.3391", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050138811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/dnares/3.3.157", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050171782"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.2000.2112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051554638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1023/a:1024231109360", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052064279", 
          "https://doi.org/10.1023/a:1024231109360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/prot.340170407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052503520"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100114a028", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055653529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/106652701300099038", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3289117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062604312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/cmb.1998.5.493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1111239204"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006-01", 
    "datePublishedReg": "2006-01-01", 
    "description": "For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0006297906010032", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1297322", 
        "issn": [
          "0006-2979", 
          "1608-3040"
        ], 
        "name": "Biochemistry (Moscow)", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "71"
      }
    ], 
    "name": "Identification of latent periodicity in amino acid sequences of protein families", 
    "pagination": "18-31", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8dde96c7f0bdb3540f11f01f93f4eb035cb8c3871f3a9ea11b5255b5eddd24e7"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16457614"
        ]
      }, 
      {
        "name": "nlm_unique_id", 
        "type": "PropertyValue", 
        "value": [
          "0376536"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0006297906010032"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029780521"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0006297906010032", 
      "https://app.dimensions.ai/details/publication/pub.1029780521"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T12:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72859_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134%2FS0006297906010032"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0006297906010032'


 

This table displays all metadata directly associated to this object as RDF triples.

260 TRIPLES      21 PREDICATES      76 URIs      31 LITERALS      19 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0006297906010032 schema:about N02ef57cd75a0487d94f026ace97c9cff
2 N1733dd5797d0437d81c1c6f826a6414a
3 N37b177732eca4160a230dd9537b5975c
4 N482a19b09443466899632216681df905
5 N4c143ab93c7d48a5af1bfd59a1a2f049
6 N5b8cad2815374e09a603f9b23cd6c544
7 Na1ca040bd5ad4a2699d77bb44c6706aa
8 Naca2d2539d6f4f7297443b6b38fad8b7
9 Nae2c4c14c9974d3fab789250f76788f7
10 Nebf607f6dc6349fc88a1f2d7b266f02d
11 anzsrc-for:06
12 anzsrc-for:0601
13 schema:author N55085199ee14463b98d168ae9739a36d
14 schema:citation sg:pub.10.1007/978-1-4419-7152-4_14
15 sg:pub.10.1007/978-3-642-86659-3
16 sg:pub.10.1007/bf02104737
17 sg:pub.10.1007/bf02759556
18 sg:pub.10.1007/s008940050122
19 sg:pub.10.1023/a:1024231109360
20 sg:pub.10.1023/a:1025139427862
21 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z
22 https://doi.org/10.1002/prot.20202
23 https://doi.org/10.1002/prot.340170108
24 https://doi.org/10.1002/prot.340170407
25 https://doi.org/10.1006/bbrc.2000.2112
26 https://doi.org/10.1006/jmbi.1999.3136
27 https://doi.org/10.1006/jmbi.2000.3684
28 https://doi.org/10.1006/jmbi.2000.3786
29 https://doi.org/10.1006/jsbi.2001.4392
30 https://doi.org/10.1006/jtbi.2000.2127
31 https://doi.org/10.1016/s0375-9601(03)00641-8
32 https://doi.org/10.1016/s0959-440x(98)80068-7
33 https://doi.org/10.1016/s0968-0004(00)01643-1
34 https://doi.org/10.1021/j100114a028
35 https://doi.org/10.1073/pnas.80.11.3391
36 https://doi.org/10.1073/pnas.95.15.8580
37 https://doi.org/10.1080/1042517031000064457
38 https://doi.org/10.1089/106652701300099038
39 https://doi.org/10.1089/cmb.1998.5.493
40 https://doi.org/10.1093/bioinformatics/12.1.49
41 https://doi.org/10.1093/bioinformatics/13.1.37
42 https://doi.org/10.1093/bioinformatics/14.6.498
43 https://doi.org/10.1093/dnares/3.3.157
44 https://doi.org/10.1093/dnares/6.3.153
45 https://doi.org/10.1093/nar/27.2.573
46 https://doi.org/10.1093/nar/28.18.3570
47 https://doi.org/10.1093/nar/gkh121
48 https://doi.org/10.1110/ps.9.6.1203
49 https://doi.org/10.1126/science.3289117
50 https://doi.org/10.1145/279069.279102
51 schema:datePublished 2006-01
52 schema:datePublishedReg 2006-01-01
53 schema:description For detection of the latent periodicity of the protein families responsible for various biological functions, methods of information decomposition, cyclic profile alignment, and the method of noise decomposition have been used. The latent periodicity, being specific to a particular family, is recognized in 94 of 110 analyzed protein families. Family specific periodicity was found for more than 70% of amino acid sequences in each of these families. Based on such sequences the characteristic profile of the latent periodicity has been deduced for each family. Possible relationship between the recognized latent periodicity, evolution of proteins, and their structural organization is discussed.
54 schema:genre research_article
55 schema:inLanguage en
56 schema:isAccessibleForFree false
57 schema:isPartOf N268fd6e0e2c7467ca231f1552d4cc376
58 Nd5d4d85128ee4b30adff260f61070b25
59 sg:journal.1297322
60 schema:name Identification of latent periodicity in amino acid sequences of protein families
61 schema:pagination 18-31
62 schema:productId N0faf7ac0d2c5459fa7d1338c9238f35e
63 N345bc32a6f5d46beb6ede6be0a2e7959
64 Ne9677809db834040a8d0bf48a538efeb
65 Nf2d8ccdc42ba4f6fb0760ac8e2ec4268
66 Nfb2811d09e24459892b300fea7f50023
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029780521
68 https://doi.org/10.1134/s0006297906010032
69 schema:sdDatePublished 2019-04-11T12:54
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nc12f507d9c6b460b8aca089b7e4ed66a
72 schema:url http://link.springer.com/10.1134%2FS0006297906010032
73 sgo:license sg:explorer/license/
74 sgo:sdDataset articles
75 rdf:type schema:ScholarlyArticle
76 N02ef57cd75a0487d94f026ace97c9cff schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
77 schema:name Sequence Analysis, Protein
78 rdf:type schema:DefinedTerm
79 N09bc6b85645a4fb8becad92436455152 rdf:first sg:person.01204515525.15
80 rdf:rest N51493a77f52443a3bac80d195bfd497d
81 N0faf7ac0d2c5459fa7d1338c9238f35e schema:name dimensions_id
82 schema:value pub.1029780521
83 rdf:type schema:PropertyValue
84 N1733dd5797d0437d81c1c6f826a6414a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
85 schema:name Computational Biology
86 rdf:type schema:DefinedTerm
87 N268fd6e0e2c7467ca231f1552d4cc376 schema:issueNumber 1
88 rdf:type schema:PublicationIssue
89 N3254f8928cb14957a51637109a1ac8af schema:name Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
90 rdf:type schema:Organization
91 N345bc32a6f5d46beb6ede6be0a2e7959 schema:name doi
92 schema:value 10.1134/s0006297906010032
93 rdf:type schema:PropertyValue
94 N37b177732eca4160a230dd9537b5975c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Proteins
96 rdf:type schema:DefinedTerm
97 N40c8094e71414fc38269b24db96b035b schema:name Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
98 rdf:type schema:Organization
99 N482a19b09443466899632216681df905 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
100 schema:name Evolution, Molecular
101 rdf:type schema:DefinedTerm
102 N4c143ab93c7d48a5af1bfd59a1a2f049 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Algorithms
104 rdf:type schema:DefinedTerm
105 N51493a77f52443a3bac80d195bfd497d rdf:first sg:person.01274151123.51
106 rdf:rest rdf:nil
107 N55085199ee14463b98d168ae9739a36d rdf:first sg:person.01342115025.07
108 rdf:rest N82aacb3d03b74e8293bbec885ff4daf2
109 N5b8cad2815374e09a603f9b23cd6c544 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Amino Acid Sequence
111 rdf:type schema:DefinedTerm
112 N82aacb3d03b74e8293bbec885ff4daf2 rdf:first sg:person.01276653270.29
113 rdf:rest N850a21f7156f4691b00b77f139ce7b05
114 N850a21f7156f4691b00b77f139ce7b05 rdf:first sg:person.012776467321.17
115 rdf:rest N09bc6b85645a4fb8becad92436455152
116 Na1ca040bd5ad4a2699d77bb44c6706aa schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
117 schema:name Animals
118 rdf:type schema:DefinedTerm
119 Naca2d2539d6f4f7297443b6b38fad8b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
120 schema:name Amino Acid Motifs
121 rdf:type schema:DefinedTerm
122 Nae2c4c14c9974d3fab789250f76788f7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Sequence Alignment
124 rdf:type schema:DefinedTerm
125 Nc12f507d9c6b460b8aca089b7e4ed66a schema:name Springer Nature - SN SciGraph project
126 rdf:type schema:Organization
127 Nd5d4d85128ee4b30adff260f61070b25 schema:volumeNumber 71
128 rdf:type schema:PublicationVolume
129 Ne9677809db834040a8d0bf48a538efeb schema:name pubmed_id
130 schema:value 16457614
131 rdf:type schema:PropertyValue
132 Nebf607f6dc6349fc88a1f2d7b266f02d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
133 schema:name Molecular Sequence Data
134 rdf:type schema:DefinedTerm
135 Nf2d8ccdc42ba4f6fb0760ac8e2ec4268 schema:name readcube_id
136 schema:value 8dde96c7f0bdb3540f11f01f93f4eb035cb8c3871f3a9ea11b5255b5eddd24e7
137 rdf:type schema:PropertyValue
138 Nfb2811d09e24459892b300fea7f50023 schema:name nlm_unique_id
139 schema:value 0376536
140 rdf:type schema:PropertyValue
141 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
142 schema:name Biological Sciences
143 rdf:type schema:DefinedTerm
144 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
145 schema:name Biochemistry and Cell Biology
146 rdf:type schema:DefinedTerm
147 sg:journal.1297322 schema:issn 0006-2979
148 1608-3040
149 schema:name Biochemistry (Moscow)
150 rdf:type schema:Periodical
151 sg:person.01204515525.15 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
152 schema:familyName Skryabin
153 schema:givenName K. G.
154 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01204515525.15
155 rdf:type schema:Person
156 sg:person.01274151123.51 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
157 schema:familyName Korotkov
158 schema:givenName E. V.
159 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01274151123.51
160 rdf:type schema:Person
161 sg:person.01276653270.29 schema:affiliation N3254f8928cb14957a51637109a1ac8af
162 schema:familyName Laskin
163 schema:givenName A. A.
164 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276653270.29
165 rdf:type schema:Person
166 sg:person.012776467321.17 schema:affiliation N40c8094e71414fc38269b24db96b035b
167 schema:familyName Kudryashov
168 schema:givenName N. A.
169 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012776467321.17
170 rdf:type schema:Person
171 sg:person.01342115025.07 schema:affiliation https://www.grid.ac/institutes/grid.482762.d
172 schema:familyName Turutina
173 schema:givenName V. P.
174 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342115025.07
175 rdf:type schema:Person
176 sg:pub.10.1007/978-1-4419-7152-4_14 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042788799
177 https://doi.org/10.1007/978-1-4419-7152-4_14
178 rdf:type schema:CreativeWork
179 sg:pub.10.1007/978-3-642-86659-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006433795
180 https://doi.org/10.1007/978-3-642-86659-3
181 rdf:type schema:CreativeWork
182 sg:pub.10.1007/bf02104737 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034838417
183 https://doi.org/10.1007/bf02104737
184 rdf:type schema:CreativeWork
185 sg:pub.10.1007/bf02759556 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018599264
186 https://doi.org/10.1007/bf02759556
187 rdf:type schema:CreativeWork
188 sg:pub.10.1007/s008940050122 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007337251
189 https://doi.org/10.1007/s008940050122
190 rdf:type schema:CreativeWork
191 sg:pub.10.1023/a:1024231109360 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052064279
192 https://doi.org/10.1023/a:1024231109360
193 rdf:type schema:CreativeWork
194 sg:pub.10.1023/a:1025139427862 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017183923
195 https://doi.org/10.1023/a:1025139427862
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1002/1097-0134(20001101)41:2<224::aid-prot70>3.0.co;2-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1009870827
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1002/prot.20202 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005455151
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1002/prot.340170108 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016229509
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1002/prot.340170407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052503520
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1006/bbrc.2000.2112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051554638
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1006/jmbi.1999.3136 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042495205
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1006/jmbi.2000.3684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021680518
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1006/jmbi.2000.3786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034260048
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1006/jsbi.2001.4392 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044174046
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1006/jtbi.2000.2127 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025368249
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1016/s0375-9601(03)00641-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004343633
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1016/s0959-440x(98)80068-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000262447
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1016/s0968-0004(00)01643-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009426549
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1021/j100114a028 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055653529
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1073/pnas.80.11.3391 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050138811
226 rdf:type schema:CreativeWork
227 https://doi.org/10.1073/pnas.95.15.8580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017913465
228 rdf:type schema:CreativeWork
229 https://doi.org/10.1080/1042517031000064457 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040869714
230 rdf:type schema:CreativeWork
231 https://doi.org/10.1089/106652701300099038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204869
232 rdf:type schema:CreativeWork
233 https://doi.org/10.1089/cmb.1998.5.493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1111239204
234 rdf:type schema:CreativeWork
235 https://doi.org/10.1093/bioinformatics/12.1.49 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046180149
236 rdf:type schema:CreativeWork
237 https://doi.org/10.1093/bioinformatics/13.1.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006849282
238 rdf:type schema:CreativeWork
239 https://doi.org/10.1093/bioinformatics/14.6.498 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024965641
240 rdf:type schema:CreativeWork
241 https://doi.org/10.1093/dnares/3.3.157 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050171782
242 rdf:type schema:CreativeWork
243 https://doi.org/10.1093/dnares/6.3.153 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039190731
244 rdf:type schema:CreativeWork
245 https://doi.org/10.1093/nar/27.2.573 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035372973
246 rdf:type schema:CreativeWork
247 https://doi.org/10.1093/nar/28.18.3570 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043692937
248 rdf:type schema:CreativeWork
249 https://doi.org/10.1093/nar/gkh121 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020798638
250 rdf:type schema:CreativeWork
251 https://doi.org/10.1110/ps.9.6.1203 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039572381
252 rdf:type schema:CreativeWork
253 https://doi.org/10.1126/science.3289117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062604312
254 rdf:type schema:CreativeWork
255 https://doi.org/10.1145/279069.279102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020320282
256 rdf:type schema:CreativeWork
257 https://www.grid.ac/institutes/grid.482762.d schema:alternateName Bioengineering Center
258 schema:name Bioengineering Center, Russian Academy of Sciences, pr. 60-letiya Oktyabrya 7/1, 117312, Moscow, Russia
259 Moscow Physical Engineering Institute (Technical University), Kashirskoe Shosse 31, 115409, Moscow, Russia
260 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...