Forecasting anticipated incomes in the Markov networks with positive and negative customers View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2017-05

AUTHORS

M. A. Matalytski

ABSTRACT

A method for determination of the time dependence of the anticipated income in the systems of Markov queuing networks with incomes and positive and negative customers was proposed. Subject to this proviso, the incomes from the transitions between the network states are deterministic functions depending on its state and time, and the system incomes in a time unit when they do not change their states depend only on these states. An illustrative example of calculations was given which shows that the anticipated incomes of the network systems can be both increasing and decreasing time functions assuming positive and negative values. More... »

PAGES

815-825

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0005117917050046

DOI

http://dx.doi.org/10.1134/s0005117917050046

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1085577539


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1701", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/17", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Psychology and Cognitive Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yanka Kupala State University of Grodno", 
          "id": "https://www.grid.ac/institutes/grid.78041.3a", 
          "name": [
            "Yanka Kupala State University of Grodno, Grodno, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Matalytski", 
        "givenName": "M. A.", 
        "id": "sg:person.07633217676.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633217676.25"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1134/s0005117909100075", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010905905", 
          "https://doi.org/10.1134/s0005117909100075"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0005117915120073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019946448", 
          "https://doi.org/10.1134/s0005117915120073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s0005117915060053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021348609", 
          "https://doi.org/10.1134/s0005117915060053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023566096", 
          "https://doi.org/10.1007/bf01158935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01158935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023566096", 
          "https://doi.org/10.1007/bf01158935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1017/s0021900200042492", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042532282"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1287/mnsc.18.9.560", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064717049"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.17512/jamcm.2015.2.06", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1068346802"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-05", 
    "datePublishedReg": "2017-05-01", 
    "description": "A method for determination of the time dependence of the anticipated income in the systems of Markov queuing networks with incomes and positive and negative customers was proposed. Subject to this proviso, the incomes from the transitions between the network states are deterministic functions depending on its state and time, and the system incomes in a time unit when they do not change their states depend only on these states. An illustrative example of calculations was given which shows that the anticipated incomes of the network systems can be both increasing and decreasing time functions assuming positive and negative values.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0005117917050046", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136242", 
        "issn": [
          "0005-1179", 
          "0005-2310"
        ], 
        "name": "Automation and Remote Control", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "78"
      }
    ], 
    "name": "Forecasting anticipated incomes in the Markov networks with positive and negative customers", 
    "pagination": "815-825", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "dccd460940aae237133138db2205eae37ab26b20c57ac7c5cf3025efe1984b98"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0005117917050046"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1085577539"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0005117917050046", 
      "https://app.dimensions.ai/details/publication/pub.1085577539"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000492.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0005117917050046"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0005117917050046'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0005117917050046'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0005117917050046'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0005117917050046'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      21 PREDICATES      34 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0005117917050046 schema:about anzsrc-for:17
2 anzsrc-for:1701
3 schema:author Ndaac06c8c0df4051aae497cd8ceceb4b
4 schema:citation sg:pub.10.1007/bf01158935
5 sg:pub.10.1134/s0005117909100075
6 sg:pub.10.1134/s0005117915060053
7 sg:pub.10.1134/s0005117915120073
8 https://doi.org/10.1017/s0021900200042492
9 https://doi.org/10.1287/mnsc.18.9.560
10 https://doi.org/10.17512/jamcm.2015.2.06
11 schema:datePublished 2017-05
12 schema:datePublishedReg 2017-05-01
13 schema:description A method for determination of the time dependence of the anticipated income in the systems of Markov queuing networks with incomes and positive and negative customers was proposed. Subject to this proviso, the incomes from the transitions between the network states are deterministic functions depending on its state and time, and the system incomes in a time unit when they do not change their states depend only on these states. An illustrative example of calculations was given which shows that the anticipated incomes of the network systems can be both increasing and decreasing time functions assuming positive and negative values.
14 schema:genre research_article
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N10658883ba244c91aa616fdb24f3de2b
18 Ne3a517605043488d9a4394945b2db649
19 sg:journal.1136242
20 schema:name Forecasting anticipated incomes in the Markov networks with positive and negative customers
21 schema:pagination 815-825
22 schema:productId N3385f67187c846ac93282653788c0497
23 N47f6204d56734bbe871fffdf95016f27
24 Nccae5a99a6fa4c2aa2ce01d41ab8e2ed
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085577539
26 https://doi.org/10.1134/s0005117917050046
27 schema:sdDatePublished 2019-04-10T19:53
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher Nb26d709fb5cd457b828a8394b3b55fc1
30 schema:url http://link.springer.com/10.1134/S0005117917050046
31 sgo:license sg:explorer/license/
32 sgo:sdDataset articles
33 rdf:type schema:ScholarlyArticle
34 N10658883ba244c91aa616fdb24f3de2b schema:volumeNumber 78
35 rdf:type schema:PublicationVolume
36 N3385f67187c846ac93282653788c0497 schema:name dimensions_id
37 schema:value pub.1085577539
38 rdf:type schema:PropertyValue
39 N47f6204d56734bbe871fffdf95016f27 schema:name readcube_id
40 schema:value dccd460940aae237133138db2205eae37ab26b20c57ac7c5cf3025efe1984b98
41 rdf:type schema:PropertyValue
42 Nb26d709fb5cd457b828a8394b3b55fc1 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 Nccae5a99a6fa4c2aa2ce01d41ab8e2ed schema:name doi
45 schema:value 10.1134/s0005117917050046
46 rdf:type schema:PropertyValue
47 Ndaac06c8c0df4051aae497cd8ceceb4b rdf:first sg:person.07633217676.25
48 rdf:rest rdf:nil
49 Ne3a517605043488d9a4394945b2db649 schema:issueNumber 5
50 rdf:type schema:PublicationIssue
51 anzsrc-for:17 schema:inDefinedTermSet anzsrc-for:
52 schema:name Psychology and Cognitive Sciences
53 rdf:type schema:DefinedTerm
54 anzsrc-for:1701 schema:inDefinedTermSet anzsrc-for:
55 schema:name Psychology
56 rdf:type schema:DefinedTerm
57 sg:journal.1136242 schema:issn 0005-1179
58 0005-2310
59 schema:name Automation and Remote Control
60 rdf:type schema:Periodical
61 sg:person.07633217676.25 schema:affiliation https://www.grid.ac/institutes/grid.78041.3a
62 schema:familyName Matalytski
63 schema:givenName M. A.
64 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07633217676.25
65 rdf:type schema:Person
66 sg:pub.10.1007/bf01158935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023566096
67 https://doi.org/10.1007/bf01158935
68 rdf:type schema:CreativeWork
69 sg:pub.10.1134/s0005117909100075 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010905905
70 https://doi.org/10.1134/s0005117909100075
71 rdf:type schema:CreativeWork
72 sg:pub.10.1134/s0005117915060053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021348609
73 https://doi.org/10.1134/s0005117915060053
74 rdf:type schema:CreativeWork
75 sg:pub.10.1134/s0005117915120073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019946448
76 https://doi.org/10.1134/s0005117915120073
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1017/s0021900200042492 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042532282
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1287/mnsc.18.9.560 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064717049
81 rdf:type schema:CreativeWork
82 https://doi.org/10.17512/jamcm.2015.2.06 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068346802
83 rdf:type schema:CreativeWork
84 https://www.grid.ac/institutes/grid.78041.3a schema:alternateName Yanka Kupala State University of Grodno
85 schema:name Yanka Kupala State University of Grodno, Grodno, Belarus
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...