On an Example of the Nikishin System View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-11

AUTHORS

S. P. Suetin

ABSTRACT

An example of a Markov function f = const + σ^ such that the three functions f, f2, and f3 constitute a Nikishin systemis given. It is conjectured that there exists aMarkov function f such that, for each n ∈ N, the system of f, f2,..., fn is a Nikishin system. More... »

PAGES

905-914

References to SciGraph publications

Journal

TITLE

Mathematical Notes

ISSUE

5-6

VOLUME

104

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0001434618110342

DOI

http://dx.doi.org/10.1134/s0001434618110342

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1110980193


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "author": [
      {
        "affiliation": {
          "alternateName": "Steklov Mathematical Institute", 
          "id": "https://www.grid.ac/institutes/grid.426543.2", 
          "name": [
            "Steklov Mathematical Institute of Russian Academy of Sciences, 119991, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Suetin", 
        "givenName": "S. P.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0021-9045(84)90036-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036305025"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-009-9077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046224625", 
          "https://doi.org/10.1007/s00365-009-9077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-009-9077-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046224625", 
          "https://doi.org/10.1007/s00365-009-9077-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00365-011-9139-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049029549", 
          "https://doi.org/10.1007/s00365-011-9139-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm225", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072371686"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm7515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072372408"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm7619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072372472"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm8632", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084456131"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm11469", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1085288357"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm9786", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1091276786"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm8724", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101236016"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm9819", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1101815639"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/rm9832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1104281176"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm8768", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105116435"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/sm8889", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1105116437"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-11", 
    "datePublishedReg": "2018-11-01", 
    "description": "An example of a Markov function f = const + \u03c3^ such that the three functions f, f2, and f3 constitute a Nikishin systemis given. It is conjectured that there exists aMarkov function f such that, for each n \u2208 N, the system of f, f2,..., fn is a Nikishin system.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0001434618110342", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136530", 
        "issn": [
          "1757-7489", 
          "1573-8876"
        ], 
        "name": "Mathematical Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5-6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "name": "On an Example of the Nikishin System", 
    "pagination": "905-914", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "e2f797b3d95af5ec216cf2a873c2019a3f87829ebc3c0b00ce7e9efc91565de5"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0001434618110342"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1110980193"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0001434618110342", 
      "https://app.dimensions.ai/details/publication/pub.1110980193"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T08:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000307_0000000307/records_42535_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0001434618110342"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001434618110342'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001434618110342'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001434618110342'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001434618110342'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      20 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0001434618110342 schema:author N2e591e76ca1d4af586a611178f20c3f2
2 schema:citation sg:pub.10.1007/s00365-009-9077-8
3 sg:pub.10.1007/s00365-011-9139-6
4 https://doi.org/10.1016/0021-9045(84)90036-4
5 https://doi.org/10.4213/mzm11469
6 https://doi.org/10.4213/rm9786
7 https://doi.org/10.4213/rm9819
8 https://doi.org/10.4213/rm9832
9 https://doi.org/10.4213/sm225
10 https://doi.org/10.4213/sm7515
11 https://doi.org/10.4213/sm7619
12 https://doi.org/10.4213/sm8632
13 https://doi.org/10.4213/sm8724
14 https://doi.org/10.4213/sm8768
15 https://doi.org/10.4213/sm8889
16 schema:datePublished 2018-11
17 schema:datePublishedReg 2018-11-01
18 schema:description An example of a Markov function f = const + σ^ such that the three functions f, f2, and f3 constitute a Nikishin systemis given. It is conjectured that there exists aMarkov function f such that, for each n ∈ N, the system of f, f2,..., fn is a Nikishin system.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N0c33c7b374864f69b19716bcd24e5858
23 N2c540d209f8548a7aa973f9b71354953
24 sg:journal.1136530
25 schema:name On an Example of the Nikishin System
26 schema:pagination 905-914
27 schema:productId N11e4090ea90a4e7abe169b678340db7c
28 N8a8d6dab17974c1aa9fea3898abdc7df
29 Nee1810f05bda4a8cb55eb54e83221513
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1110980193
31 https://doi.org/10.1134/s0001434618110342
32 schema:sdDatePublished 2019-04-11T08:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Ne373ae99f9434b4aa421d6ea7569b420
35 schema:url https://link.springer.com/10.1134%2FS0001434618110342
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N0c33c7b374864f69b19716bcd24e5858 schema:volumeNumber 104
40 rdf:type schema:PublicationVolume
41 N11e4090ea90a4e7abe169b678340db7c schema:name dimensions_id
42 schema:value pub.1110980193
43 rdf:type schema:PropertyValue
44 N2c540d209f8548a7aa973f9b71354953 schema:issueNumber 5-6
45 rdf:type schema:PublicationIssue
46 N2e591e76ca1d4af586a611178f20c3f2 rdf:first N857f622759e743fc8c4cd4a871a822d1
47 rdf:rest rdf:nil
48 N857f622759e743fc8c4cd4a871a822d1 schema:affiliation https://www.grid.ac/institutes/grid.426543.2
49 schema:familyName Suetin
50 schema:givenName S. P.
51 rdf:type schema:Person
52 N8a8d6dab17974c1aa9fea3898abdc7df schema:name doi
53 schema:value 10.1134/s0001434618110342
54 rdf:type schema:PropertyValue
55 Ne373ae99f9434b4aa421d6ea7569b420 schema:name Springer Nature - SN SciGraph project
56 rdf:type schema:Organization
57 Nee1810f05bda4a8cb55eb54e83221513 schema:name readcube_id
58 schema:value e2f797b3d95af5ec216cf2a873c2019a3f87829ebc3c0b00ce7e9efc91565de5
59 rdf:type schema:PropertyValue
60 sg:journal.1136530 schema:issn 1573-8876
61 1757-7489
62 schema:name Mathematical Notes
63 rdf:type schema:Periodical
64 sg:pub.10.1007/s00365-009-9077-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046224625
65 https://doi.org/10.1007/s00365-009-9077-8
66 rdf:type schema:CreativeWork
67 sg:pub.10.1007/s00365-011-9139-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049029549
68 https://doi.org/10.1007/s00365-011-9139-6
69 rdf:type schema:CreativeWork
70 https://doi.org/10.1016/0021-9045(84)90036-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036305025
71 rdf:type schema:CreativeWork
72 https://doi.org/10.4213/mzm11469 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085288357
73 rdf:type schema:CreativeWork
74 https://doi.org/10.4213/rm9786 schema:sameAs https://app.dimensions.ai/details/publication/pub.1091276786
75 rdf:type schema:CreativeWork
76 https://doi.org/10.4213/rm9819 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101815639
77 rdf:type schema:CreativeWork
78 https://doi.org/10.4213/rm9832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1104281176
79 rdf:type schema:CreativeWork
80 https://doi.org/10.4213/sm225 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072371686
81 rdf:type schema:CreativeWork
82 https://doi.org/10.4213/sm7515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072372408
83 rdf:type schema:CreativeWork
84 https://doi.org/10.4213/sm7619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072372472
85 rdf:type schema:CreativeWork
86 https://doi.org/10.4213/sm8632 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084456131
87 rdf:type schema:CreativeWork
88 https://doi.org/10.4213/sm8724 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101236016
89 rdf:type schema:CreativeWork
90 https://doi.org/10.4213/sm8768 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105116435
91 rdf:type schema:CreativeWork
92 https://doi.org/10.4213/sm8889 schema:sameAs https://app.dimensions.ai/details/publication/pub.1105116437
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.426543.2 schema:alternateName Steklov Mathematical Institute
95 schema:name Steklov Mathematical Institute of Russian Academy of Sciences, 119991, Moscow, Russia
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...