Invariant Estimates of Two-Dimensional Oscillatory Integrals View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-07

AUTHORS

A. R. Safarov

ABSTRACT

Invariant estimates of oscillatory integrals with polynomial phase are studied. The main result is a theorem on uniform invariant estimates of trigonometric integrals. The obtained estimates improve Popov’s well-known results on invariant estimates of trigonometric integrals in the case where the phase function is a third-degree polynomial.

PAGES

293-302

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0001434618070301

DOI

http://dx.doi.org/10.1134/s0001434618070301

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1107430712


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Samarkand State University, 140104, Samarkand, Uzbekistan", 
          "id": "http://www.grid.ac/institutes/grid.77443.33", 
          "name": [
            "Samarkand State University, 140104, Samarkand, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Safarov", 
        "givenName": "A. R.", 
        "id": "sg:person.016267226060.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267226060.10"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2018-07", 
    "datePublishedReg": "2018-07-01", 
    "description": "Invariant estimates of oscillatory integrals with polynomial phase are studied. The main result is a theorem on uniform invariant estimates of trigonometric integrals. The obtained estimates improve Popov\u2019s well-known results on invariant estimates of trigonometric integrals in the case where the phase function is a third-degree polynomial.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/s0001434618070301", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136530", 
        "issn": [
          "1757-7489", 
          "2305-2880"
        ], 
        "name": "Mathematical Notes", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1-2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "104"
      }
    ], 
    "keywords": [
      "invariant estimates", 
      "oscillatory integrals", 
      "trigonometric integrals", 
      "polynomial phase", 
      "third-degree polynomial", 
      "integrals", 
      "main results", 
      "estimates", 
      "theorem", 
      "phase function", 
      "polynomials", 
      "Popov", 
      "results", 
      "function", 
      "cases", 
      "phase", 
      "uniform invariant estimates", 
      "Two-Dimensional Oscillatory Integrals"
    ], 
    "name": "Invariant Estimates of Two-Dimensional Oscillatory Integrals", 
    "pagination": "293-302", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1107430712"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0001434618070301"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0001434618070301", 
      "https://app.dimensions.ai/details/publication/pub.1107430712"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_791.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/s0001434618070301"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001434618070301'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001434618070301'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001434618070301'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001434618070301'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      21 PREDICATES      44 URIs      36 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0001434618070301 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Ndbb45904cd9f430fa0a71966a91990f1
4 schema:datePublished 2018-07
5 schema:datePublishedReg 2018-07-01
6 schema:description Invariant estimates of oscillatory integrals with polynomial phase are studied. The main result is a theorem on uniform invariant estimates of trigonometric integrals. The obtained estimates improve Popov’s well-known results on invariant estimates of trigonometric integrals in the case where the phase function is a third-degree polynomial.
7 schema:genre article
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N001c92a59fbe4aee9544e3ae6e587075
11 N0e696df9d37a4b3291909a633502546e
12 sg:journal.1136530
13 schema:keywords Popov
14 Two-Dimensional Oscillatory Integrals
15 cases
16 estimates
17 function
18 integrals
19 invariant estimates
20 main results
21 oscillatory integrals
22 phase
23 phase function
24 polynomial phase
25 polynomials
26 results
27 theorem
28 third-degree polynomial
29 trigonometric integrals
30 uniform invariant estimates
31 schema:name Invariant Estimates of Two-Dimensional Oscillatory Integrals
32 schema:pagination 293-302
33 schema:productId Ne47246cb163f4cfcb8d59ce91f55b182
34 Nf83ea518dd9048948f02f744c353eef3
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1107430712
36 https://doi.org/10.1134/s0001434618070301
37 schema:sdDatePublished 2021-11-01T18:35
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N2ee6fadf799c40939020630afc4a717e
40 schema:url https://doi.org/10.1134/s0001434618070301
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N001c92a59fbe4aee9544e3ae6e587075 schema:issueNumber 1-2
45 rdf:type schema:PublicationIssue
46 N0e696df9d37a4b3291909a633502546e schema:volumeNumber 104
47 rdf:type schema:PublicationVolume
48 N2ee6fadf799c40939020630afc4a717e schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 Ndbb45904cd9f430fa0a71966a91990f1 rdf:first sg:person.016267226060.10
51 rdf:rest rdf:nil
52 Ne47246cb163f4cfcb8d59ce91f55b182 schema:name dimensions_id
53 schema:value pub.1107430712
54 rdf:type schema:PropertyValue
55 Nf83ea518dd9048948f02f744c353eef3 schema:name doi
56 schema:value 10.1134/s0001434618070301
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1136530 schema:issn 1757-7489
65 2305-2880
66 schema:name Mathematical Notes
67 schema:publisher Pleiades Publishing
68 rdf:type schema:Periodical
69 sg:person.016267226060.10 schema:affiliation grid-institutes:grid.77443.33
70 schema:familyName Safarov
71 schema:givenName A. R.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016267226060.10
73 rdf:type schema:Person
74 grid-institutes:grid.77443.33 schema:alternateName Samarkand State University, 140104, Samarkand, Uzbekistan
75 schema:name Samarkand State University, 140104, Samarkand, Uzbekistan
76 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...