A nonstandard Cauchy problem for the heat equation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2017-07

AUTHORS

K. O. Makhmudov, O. I. Makhmudov, N. Tarkhanov

ABSTRACT

We consider the Cauchy problem for the heat equation in a cylinder CT = X × (0, T) over a domain X in Rn, with data on a strip lying on the lateral surface. The strip is of the form S × (0, T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S, we derive an explicit formula for solutions of this problem. More... »

PAGES

250-260

References to SciGraph publications

  • 1990-11. Conditionally stable linear problems and the Carleman formula in SIBERIAN MATHEMATICAL JOURNAL
  • 2004-05. A Carleman Function and the Cauchy Problem for the Laplace Equation in SIBERIAN MATHEMATICAL JOURNAL
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0001434617070264

    DOI

    http://dx.doi.org/10.1134/s0001434617070264

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1092349208


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/grid.77443.33", 
              "name": [
                "Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makhmudov", 
            "givenName": "K. O.", 
            "id": "sg:person.011516043743.63", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516043743.63"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan", 
              "id": "http://www.grid.ac/institutes/grid.77443.33", 
              "name": [
                "Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Makhmudov", 
            "givenName": "O. I.", 
            "id": "sg:person.015462046060.17", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462046060.17"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Potsdam, Germany", 
              "id": "http://www.grid.ac/institutes/grid.11348.3f", 
              "name": [
                "Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Potsdam, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tarkhanov", 
            "givenName": "N.", 
            "id": "sg:person.015370572403.41", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370572403.41"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1023/b:simj.0000028622.69605.c0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1029041881", 
              "https://doi.org/10.1023/b:simj.0000028622.69605.c0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00970052", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1026331202", 
              "https://doi.org/10.1007/bf00970052"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2017-07", 
        "datePublishedReg": "2017-07-01", 
        "description": "We consider the Cauchy problem for the heat equation in a cylinder CT = X \u00d7 (0, T) over a domain X in Rn, with data on a strip lying on the lateral surface. The strip is of the form S \u00d7 (0, T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S, we derive an explicit formula for solutions of this problem.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/s0001434617070264", 
        "inLanguage": "en", 
        "isAccessibleForFree": true, 
        "isPartOf": [
          {
            "id": "sg:journal.1136530", 
            "issn": [
              "1757-7489", 
              "2305-2880"
            ], 
            "name": "Mathematical Notes", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1-2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "102"
          }
        ], 
        "keywords": [
          "natural restrictions", 
          "domain X", 
          "solution", 
          "heat equation", 
          "subset", 
          "data", 
          "configuration", 
          "restriction", 
          "boundaries", 
          "explicit formula", 
          "formula", 
          "CT", 
          "equations", 
          "Rn", 
          "open subset", 
          "strips", 
          "surface", 
          "Cauchy problem", 
          "lateral surface", 
          "problem", 
          "cylinder CT", 
          "form S \u00d7", 
          "S \u00d7", 
          "nonstandard Cauchy problem"
        ], 
        "name": "A nonstandard Cauchy problem for the heat equation", 
        "pagination": "250-260", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1092349208"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0001434617070264"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0001434617070264", 
          "https://app.dimensions.ai/details/publication/pub.1092349208"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_754.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/s0001434617070264"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001434617070264'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001434617070264'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001434617070264'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001434617070264'


     

    This table displays all metadata directly associated to this object as RDF triples.

    107 TRIPLES      22 PREDICATES      52 URIs      42 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0001434617070264 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author N42697f1413874779a0e8cbbc5da85287
    4 schema:citation sg:pub.10.1007/bf00970052
    5 sg:pub.10.1023/b:simj.0000028622.69605.c0
    6 schema:datePublished 2017-07
    7 schema:datePublishedReg 2017-07-01
    8 schema:description We consider the Cauchy problem for the heat equation in a cylinder CT = X × (0, T) over a domain X in Rn, with data on a strip lying on the lateral surface. The strip is of the form S × (0, T), where S is an open subset of the boundary of X. The problem is ill-posed. Under natural restrictions on the configuration of S, we derive an explicit formula for solutions of this problem.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree true
    12 schema:isPartOf Na1ea4f34256b4dbeb6401a2d5731560e
    13 Ncf5af6100da94a198b55620bbe812e18
    14 sg:journal.1136530
    15 schema:keywords CT
    16 Cauchy problem
    17 Rn
    18 S ×
    19 boundaries
    20 configuration
    21 cylinder CT
    22 data
    23 domain X
    24 equations
    25 explicit formula
    26 form S ×
    27 formula
    28 heat equation
    29 lateral surface
    30 natural restrictions
    31 nonstandard Cauchy problem
    32 open subset
    33 problem
    34 restriction
    35 solution
    36 strips
    37 subset
    38 surface
    39 schema:name A nonstandard Cauchy problem for the heat equation
    40 schema:pagination 250-260
    41 schema:productId N272b6e7387304b73bd0273a72a3a8c30
    42 N527ab005b2214460af35f01c353e2631
    43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1092349208
    44 https://doi.org/10.1134/s0001434617070264
    45 schema:sdDatePublished 2021-11-01T18:31
    46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    47 schema:sdPublisher Ne6a62423c3e84580ae6d8c8c7dc606fe
    48 schema:url https://doi.org/10.1134/s0001434617070264
    49 sgo:license sg:explorer/license/
    50 sgo:sdDataset articles
    51 rdf:type schema:ScholarlyArticle
    52 N1a869817a6a944bb899a675987b15eb4 rdf:first sg:person.015462046060.17
    53 rdf:rest N250bc0367c7040f081d40f4f74fcb0db
    54 N250bc0367c7040f081d40f4f74fcb0db rdf:first sg:person.015370572403.41
    55 rdf:rest rdf:nil
    56 N272b6e7387304b73bd0273a72a3a8c30 schema:name dimensions_id
    57 schema:value pub.1092349208
    58 rdf:type schema:PropertyValue
    59 N42697f1413874779a0e8cbbc5da85287 rdf:first sg:person.011516043743.63
    60 rdf:rest N1a869817a6a944bb899a675987b15eb4
    61 N527ab005b2214460af35f01c353e2631 schema:name doi
    62 schema:value 10.1134/s0001434617070264
    63 rdf:type schema:PropertyValue
    64 Na1ea4f34256b4dbeb6401a2d5731560e schema:issueNumber 1-2
    65 rdf:type schema:PublicationIssue
    66 Ncf5af6100da94a198b55620bbe812e18 schema:volumeNumber 102
    67 rdf:type schema:PublicationVolume
    68 Ne6a62423c3e84580ae6d8c8c7dc606fe schema:name Springer Nature - SN SciGraph project
    69 rdf:type schema:Organization
    70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    71 schema:name Mathematical Sciences
    72 rdf:type schema:DefinedTerm
    73 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    74 schema:name Pure Mathematics
    75 rdf:type schema:DefinedTerm
    76 sg:journal.1136530 schema:issn 1757-7489
    77 2305-2880
    78 schema:name Mathematical Notes
    79 schema:publisher Pleiades Publishing
    80 rdf:type schema:Periodical
    81 sg:person.011516043743.63 schema:affiliation grid-institutes:grid.77443.33
    82 schema:familyName Makhmudov
    83 schema:givenName K. O.
    84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011516043743.63
    85 rdf:type schema:Person
    86 sg:person.015370572403.41 schema:affiliation grid-institutes:grid.11348.3f
    87 schema:familyName Tarkhanov
    88 schema:givenName N.
    89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015370572403.41
    90 rdf:type schema:Person
    91 sg:person.015462046060.17 schema:affiliation grid-institutes:grid.77443.33
    92 schema:familyName Makhmudov
    93 schema:givenName O. I.
    94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015462046060.17
    95 rdf:type schema:Person
    96 sg:pub.10.1007/bf00970052 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026331202
    97 https://doi.org/10.1007/bf00970052
    98 rdf:type schema:CreativeWork
    99 sg:pub.10.1023/b:simj.0000028622.69605.c0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029041881
    100 https://doi.org/10.1023/b:simj.0000028622.69605.c0
    101 rdf:type schema:CreativeWork
    102 grid-institutes:grid.11348.3f schema:alternateName Institut für Mathematik, Universität Potsdam, Potsdam, Germany
    103 schema:name Institut für Mathematik, Universität Potsdam, Potsdam, Germany
    104 rdf:type schema:Organization
    105 grid-institutes:grid.77443.33 schema:alternateName Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan
    106 schema:name Alisher-Navoi Samarkand State University, Samarkand, Uzbekistan
    107 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...