Critical non-singly-generated totally canonical fitting classes of finite groups View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2008-04

AUTHORS

V. E. Egorova

ABSTRACT

Let ℑ be the class of all finite simple groups and f: ℑ → {Fitting classes of groups}. The Fitting class = KR(f) = (G: OA,A′ (G) ∈ f(A) for any A ∈ K (G)) is referred to as a canonical Fitting class with satellite f. A non-singly-generated totally canonical Fitting class is said to be critical non-singly-generated if all proper totally canonical Fitting subclasses in are singly generated. In the paper, a complete description of the structure of the critical non-singly-generated totally canonical Fitting classes of finite groups is obtained. More... »

PAGES

478-484

References to SciGraph publications

Journal

TITLE

Mathematical Notes

ISSUE

3-4

VOLUME

83

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0001434608030206

DOI

http://dx.doi.org/10.1134/s0001434608030206

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023834452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State Pedagogical University", 
          "id": "https://www.grid.ac/institutes/grid.77321.30", 
          "name": [
            "Moscow State Pedagogical University, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egorova", 
        "givenName": "V. E.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1023/b:allo.0000004174.68640.8a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034111472", 
          "https://doi.org/10.1023/b:allo.0000004174.68640.8a"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/dm299", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072362817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.4213/mzm2709", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1072367140"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1515/9783110870138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1096920729"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2008-04", 
    "datePublishedReg": "2008-04-01", 
    "description": "Let \u2111 be the class of all finite simple groups and f: \u2111 \u2192 {Fitting classes of groups}. The Fitting class = KR(f) = (G: OA,A\u2032 (G) \u2208 f(A) for any A \u2208 K (G)) is referred to as a canonical Fitting class with satellite f. A non-singly-generated totally canonical Fitting class is said to be critical non-singly-generated if all proper totally canonical Fitting subclasses in are singly generated. In the paper, a complete description of the structure of the critical non-singly-generated totally canonical Fitting classes of finite groups is obtained.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0001434608030206", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136530", 
        "issn": [
          "1757-7489", 
          "1573-8876"
        ], 
        "name": "Mathematical Notes", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3-4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "83"
      }
    ], 
    "name": "Critical non-singly-generated totally canonical fitting classes of finite groups", 
    "pagination": "478-484", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "718ceec1478a61e01835291c9954b4bfc5f10ea0fa57b6cbeda07963118e4fc0"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0001434608030206"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023834452"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0001434608030206", 
      "https://app.dimensions.ai/details/publication/pub.1023834452"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T16:39", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000499.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0001434608030206"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001434608030206'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001434608030206'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001434608030206'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001434608030206'


 

This table displays all metadata directly associated to this object as RDF triples.

73 TRIPLES      21 PREDICATES      31 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0001434608030206 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N06ee0b43537c409a94cb9e002250c762
4 schema:citation sg:pub.10.1023/b:allo.0000004174.68640.8a
5 https://doi.org/10.1515/9783110870138
6 https://doi.org/10.4213/dm299
7 https://doi.org/10.4213/mzm2709
8 schema:datePublished 2008-04
9 schema:datePublishedReg 2008-04-01
10 schema:description Let ℑ be the class of all finite simple groups and f: ℑ → {Fitting classes of groups}. The Fitting class = KR(f) = (G: OA,A′ (G) ∈ f(A) for any A ∈ K (G)) is referred to as a canonical Fitting class with satellite f. A non-singly-generated totally canonical Fitting class is said to be critical non-singly-generated if all proper totally canonical Fitting subclasses in are singly generated. In the paper, a complete description of the structure of the critical non-singly-generated totally canonical Fitting classes of finite groups is obtained.
11 schema:genre research_article
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf Na8b0972ba3a34dbcb12d3ea584181e9e
15 Nc04d36f9fd574b408856b9d3c42130a8
16 sg:journal.1136530
17 schema:name Critical non-singly-generated totally canonical fitting classes of finite groups
18 schema:pagination 478-484
19 schema:productId N07c842ad2b124f90a3dbc51fdcbde389
20 N77b75440eee84be6be1f87bfedea0e81
21 Nfc8ee1ed4e5844b3826127da27c61755
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023834452
23 https://doi.org/10.1134/s0001434608030206
24 schema:sdDatePublished 2019-04-10T16:39
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher Nb3d4c83218ba4e658b7e8ff20be0af42
27 schema:url http://link.springer.com/10.1134/S0001434608030206
28 sgo:license sg:explorer/license/
29 sgo:sdDataset articles
30 rdf:type schema:ScholarlyArticle
31 N06ee0b43537c409a94cb9e002250c762 rdf:first N6fa77e3331d24aea97bd1ce372e2407e
32 rdf:rest rdf:nil
33 N07c842ad2b124f90a3dbc51fdcbde389 schema:name dimensions_id
34 schema:value pub.1023834452
35 rdf:type schema:PropertyValue
36 N6fa77e3331d24aea97bd1ce372e2407e schema:affiliation https://www.grid.ac/institutes/grid.77321.30
37 schema:familyName Egorova
38 schema:givenName V. E.
39 rdf:type schema:Person
40 N77b75440eee84be6be1f87bfedea0e81 schema:name doi
41 schema:value 10.1134/s0001434608030206
42 rdf:type schema:PropertyValue
43 Na8b0972ba3a34dbcb12d3ea584181e9e schema:volumeNumber 83
44 rdf:type schema:PublicationVolume
45 Nb3d4c83218ba4e658b7e8ff20be0af42 schema:name Springer Nature - SN SciGraph project
46 rdf:type schema:Organization
47 Nc04d36f9fd574b408856b9d3c42130a8 schema:issueNumber 3-4
48 rdf:type schema:PublicationIssue
49 Nfc8ee1ed4e5844b3826127da27c61755 schema:name readcube_id
50 schema:value 718ceec1478a61e01835291c9954b4bfc5f10ea0fa57b6cbeda07963118e4fc0
51 rdf:type schema:PropertyValue
52 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
53 schema:name Engineering
54 rdf:type schema:DefinedTerm
55 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
56 schema:name Materials Engineering
57 rdf:type schema:DefinedTerm
58 sg:journal.1136530 schema:issn 1573-8876
59 1757-7489
60 schema:name Mathematical Notes
61 rdf:type schema:Periodical
62 sg:pub.10.1023/b:allo.0000004174.68640.8a schema:sameAs https://app.dimensions.ai/details/publication/pub.1034111472
63 https://doi.org/10.1023/b:allo.0000004174.68640.8a
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1515/9783110870138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1096920729
66 rdf:type schema:CreativeWork
67 https://doi.org/10.4213/dm299 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072362817
68 rdf:type schema:CreativeWork
69 https://doi.org/10.4213/mzm2709 schema:sameAs https://app.dimensions.ai/details/publication/pub.1072367140
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.77321.30 schema:alternateName Moscow State Pedagogical University
72 schema:name Moscow State Pedagogical University, Moscow, Russia
73 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...