GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2018-12

AUTHORS

An. A. Soloviev, Al. A. Soloviev, A. D. Gvishiani, B. P. Nikolov, Yu. I. Nikolova

ABSTRACT

Zones of higher seismic hazard occupy about 20% of Russia’s territory, and 5% are characterized by extremely high hazard. These latter are, in particular, regions of Caucasus and Crimea with an aggregate population of about 15 M people. In order to assess seismic hazard and to minimize the consequences of possible earthquakes in these regions, a special-purpose database has been created for these regions; this database and a multifunctional user interface for its operation are currently being developed. For the first time, one software environment has integrated the most complete results on recognizing zones of higher seismicity by independent methods and the initial data on which the recognition was based. Thus, the system allows integrated multi-criteria seismic hazard assessment in a given region. The use of a modern geographic informational system (GIS) has made the preparation, organization, and analysis of these data considerably easier. The GIS makes it possible on the basis of a comprehensive approach to seismic hazard assessment to group and visualize the respective data in an interactive map. The analytical and interactive query tools integrated in the GIS allow a user to assess the degree of risk in regions under consideration based on different criteria and methods. The seismic hazard assessment database and its user interface were achieved using ESRI ArcGIS software, which completely satisfies the scaling requirement in terms of both functionality and data volume. More... »

PAGES

1363-1373

References to SciGraph publications

  • 2011-01. A Multiscale Application of the Unified Scaling Law for Earthquakes in the Central Mediterranean Area and Alpine Region in PURE AND APPLIED GEOPHYSICS
  • 2013-11. A new approach to recognition of the strong earthquake-prone areas in the Caucasus in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • 2016-10. Unified scaling law for earthquakes in Crimea and Northern Caucasus in DOKLADY EARTH SCIENCES
  • 2014-03. Recognition of earthquake-prone areas: Methodology and analysis of the results in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • 2016-12. Building the second version of the World Digital Magnetic Anomaly Map (WDMAM) in EARTH, PLANETS AND SPACE
  • 2014-03. Estimation of seismic hazard and risks for the Himalayas and surrounding regions based on Unified Scaling Law for Earthquakes in NATURAL HAZARDS
  • 2017-05. Formalized clustering and significant earthquake-prone areas in the Crimean Peninsula and Northwest Caucasus in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • 2016-11. Application of the data on the lithospheric magnetic anomalies in the problem of recognizing the earthquake prone areas in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • 2014-12. Modern approaches to processing large hyperspectral and multispectral aerospace data flows in IZVESTIYA, ATMOSPHERIC AND OCEANIC PHYSICS
  • 2016-07. FCaZm intelligent recognition system for locating areas prone to strong earthquakes in the Andean and Caucasian mountain belts in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • 2013-06. Recognition of potential sources of strong earthquakes in the Caucasus region using GIS technologies in DOKLADY EARTH SCIENCES
  • 2013-04. Update of normative seismic zoning in the framework of the integrated information system for the seismic safety of Russia in SEISMIC INSTRUMENTS
  • 2017-05. Recognition of strong earthquake–prone areas with a single learning class in DOKLADY EARTH SCIENCES
  • 2003-07. Mathematical Methods of Geoinformatics. II. Fuzzy-Logic Algorithms in the Problems of Abnormality Separation in Time Series in CYBERNETICS AND SYSTEMS ANALYSIS
  • 2017-11. A Morphostructural Zoning of the Mountainous Crimea and the Possible Locations of Future Earthquakes in JOURNAL OF VOLCANOLOGY AND SEISMOLOGY
  • 2017-05. Modeling the dynamics of the block structure and seismicity of the Caucasus in IZVESTIYA, PHYSICS OF THE SOLID EARTH
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/s0001433818090505

    DOI

    http://dx.doi.org/10.1134/s0001433818090505

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1112066973


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information Systems", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Information and Computing Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Schmidt Institute of Physics of the Earth", 
              "id": "https://www.grid.ac/institutes/grid.435352.6", 
              "name": [
                "Geophysical Center of the Russian Academy of Sciences, Moscow, Russia", 
                "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soloviev", 
            "givenName": "An. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Russian Academy of Sciences", 
              "id": "https://www.grid.ac/institutes/grid.4886.2", 
              "name": [
                "Geophysical Center of the Russian Academy of Sciences, Moscow, Russia", 
                "Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Soloviev", 
            "givenName": "Al. A.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Schmidt Institute of Physics of the Earth", 
              "id": "https://www.grid.ac/institutes/grid.435352.6", 
              "name": [
                "Geophysical Center of the Russian Academy of Sciences, Moscow, Russia", 
                "Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gvishiani", 
            "givenName": "A. D.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geophysical Center", 
              "id": "https://www.grid.ac/institutes/grid.465308.c", 
              "name": [
                "Geophysical Center of the Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolov", 
            "givenName": "B. P.", 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Geophysical Center", 
              "id": "https://www.grid.ac/institutes/grid.465308.c", 
              "name": [
                "Geophysical Center of the Russian Academy of Sciences, Moscow, Russia"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Nikolova", 
            "givenName": "Yu. I.", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1134/s1069351316050141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005467582", 
              "https://doi.org/10.1134/s1069351316050141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351316050141", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1005467582", 
              "https://doi.org/10.1134/s1069351316050141"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40623-016-0404-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009078295", 
              "https://doi.org/10.1186/s40623-016-0404-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1186/s40623-016-0404-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009078295", 
              "https://doi.org/10.1186/s40623-016-0404-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351316040017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012850987", 
              "https://doi.org/10.1134/s1069351316040017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351316040017", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012850987", 
              "https://doi.org/10.1134/s1069351316040017"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351313060049", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014186824", 
              "https://doi.org/10.1134/s1069351313060049"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.epsl.2007.04.006", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1018304766"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351314020116", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021484272", 
              "https://doi.org/10.1134/s1069351314020116"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.5334/dsj-2016-016", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028431911"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1028334x13060159", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1030827991", 
              "https://doi.org/10.1134/s1028334x13060159"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s11069-013-0926-1", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032127117", 
              "https://doi.org/10.1007/s11069-013-0926-1"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s00024-010-0163-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1032627899", 
              "https://doi.org/10.1007/s00024-010-0163-4"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.3103/s0747923913020047", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1033089044", 
              "https://doi.org/10.3103/s0747923913020047"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0001433814090060", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1039901360", 
              "https://doi.org/10.1134/s0001433814090060"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/b:casa.0000003505.56410.4f", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1041540739", 
              "https://doi.org/10.1023/b:casa.0000003505.56410.4f"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1028334x16100032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045614602", 
              "https://doi.org/10.1134/s1028334x16100032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1028334x16100032", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1045614602", 
              "https://doi.org/10.1134/s1028334x16100032"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.17580/gzh.2015.10.16", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1068364855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2205/2011es000501", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069289948"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2205/2015es000559", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069290128"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.2205/2016es000587", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1069290157"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s106935131703003x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594415", 
              "https://doi.org/10.1134/s106935131703003x"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1069351317030120", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1085594975", 
              "https://doi.org/10.1134/s1069351317030120"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s1028334x17050038", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1086008423", 
              "https://doi.org/10.1134/s1028334x17050038"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0742046317060021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101276827", 
              "https://doi.org/10.1134/s0742046317060021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0742046317060021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101276827", 
              "https://doi.org/10.1134/s0742046317060021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1134/s0742046317060021", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1101276827", 
              "https://doi.org/10.1134/s0742046317060021"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.30638/eemj.2013.001", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1106167123"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2018-12", 
        "datePublishedReg": "2018-12-01", 
        "description": "Zones of higher seismic hazard occupy about 20% of Russia\u2019s territory, and 5% are characterized by extremely high hazard. These latter are, in particular, regions of Caucasus and Crimea with an aggregate population of about 15 M people. In order to assess seismic hazard and to minimize the consequences of possible earthquakes in these regions, a special-purpose database has been created for these regions; this database and a multifunctional user interface for its operation are currently being developed. For the first time, one software environment has integrated the most complete results on recognizing zones of higher seismicity by independent methods and the initial data on which the recognition was based. Thus, the system allows integrated multi-criteria seismic hazard assessment in a given region. The use of a modern geographic informational system (GIS) has made the preparation, organization, and analysis of these data considerably easier. The GIS makes it possible on the basis of a comprehensive approach to seismic hazard assessment to group and visualize the respective data in an interactive map. The analytical and interactive query tools integrated in the GIS allow a user to assess the degree of risk in regions under consideration based on different criteria and methods. The seismic hazard assessment database and its user interface were achieved using ESRI ArcGIS software, which completely satisfies the scaling requirement in terms of both functionality and data volume.", 
        "genre": "research_article", 
        "id": "sg:pub.10.1134/s0001433818090505", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1136329", 
            "issn": [
              "0001-4338", 
              "1023-6317"
            ], 
            "name": "Izvestiya, Atmospheric and Oceanic Physics", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "9", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "54"
          }
        ], 
        "name": "GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions", 
        "pagination": "1363-1373", 
        "productId": [
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "6652d38c7fc7a83429882b4b3b81ae6b2081c174935f9b9ae7fba89fa860878b"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/s0001433818090505"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1112066973"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/s0001433818090505", 
          "https://app.dimensions.ai/details/publication/pub.1112066973"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2019-04-11T09:04", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000334_0000000334/records_127778_00000000.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://link.springer.com/10.1134%2FS0001433818090505"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001433818090505'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001433818090505'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001433818090505'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001433818090505'


     

    This table displays all metadata directly associated to this object as RDF triples.

    177 TRIPLES      21 PREDICATES      50 URIs      19 LITERALS      7 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/s0001433818090505 schema:about anzsrc-for:08
    2 anzsrc-for:0806
    3 schema:author Nc192e474e33f482e8a643a95bac90ce0
    4 schema:citation sg:pub.10.1007/s00024-010-0163-4
    5 sg:pub.10.1007/s11069-013-0926-1
    6 sg:pub.10.1023/b:casa.0000003505.56410.4f
    7 sg:pub.10.1134/s0001433814090060
    8 sg:pub.10.1134/s0742046317060021
    9 sg:pub.10.1134/s1028334x13060159
    10 sg:pub.10.1134/s1028334x16100032
    11 sg:pub.10.1134/s1028334x17050038
    12 sg:pub.10.1134/s1069351313060049
    13 sg:pub.10.1134/s1069351314020116
    14 sg:pub.10.1134/s1069351316040017
    15 sg:pub.10.1134/s1069351316050141
    16 sg:pub.10.1134/s106935131703003x
    17 sg:pub.10.1134/s1069351317030120
    18 sg:pub.10.1186/s40623-016-0404-6
    19 sg:pub.10.3103/s0747923913020047
    20 https://doi.org/10.1016/j.epsl.2007.04.006
    21 https://doi.org/10.17580/gzh.2015.10.16
    22 https://doi.org/10.2205/2011es000501
    23 https://doi.org/10.2205/2015es000559
    24 https://doi.org/10.2205/2016es000587
    25 https://doi.org/10.30638/eemj.2013.001
    26 https://doi.org/10.5334/dsj-2016-016
    27 schema:datePublished 2018-12
    28 schema:datePublishedReg 2018-12-01
    29 schema:description Zones of higher seismic hazard occupy about 20% of Russia’s territory, and 5% are characterized by extremely high hazard. These latter are, in particular, regions of Caucasus and Crimea with an aggregate population of about 15 M people. In order to assess seismic hazard and to minimize the consequences of possible earthquakes in these regions, a special-purpose database has been created for these regions; this database and a multifunctional user interface for its operation are currently being developed. For the first time, one software environment has integrated the most complete results on recognizing zones of higher seismicity by independent methods and the initial data on which the recognition was based. Thus, the system allows integrated multi-criteria seismic hazard assessment in a given region. The use of a modern geographic informational system (GIS) has made the preparation, organization, and analysis of these data considerably easier. The GIS makes it possible on the basis of a comprehensive approach to seismic hazard assessment to group and visualize the respective data in an interactive map. The analytical and interactive query tools integrated in the GIS allow a user to assess the degree of risk in regions under consideration based on different criteria and methods. The seismic hazard assessment database and its user interface were achieved using ESRI ArcGIS software, which completely satisfies the scaling requirement in terms of both functionality and data volume.
    30 schema:genre research_article
    31 schema:inLanguage en
    32 schema:isAccessibleForFree false
    33 schema:isPartOf N4bc6e99dc7f345f98b812d47afe2f874
    34 Ndd5c16b09cf54d1f9264c8e2a327556d
    35 sg:journal.1136329
    36 schema:name GIS-Oriented Database on Seismic Hazard Assessment for Caucasian and Crimean Regions
    37 schema:pagination 1363-1373
    38 schema:productId N1565034229104a0f97b288d232d35086
    39 N2b1a3da737f147e4be7695619099939e
    40 Nfeff90e2761048a2a3bc1712bf0642e2
    41 schema:sameAs https://app.dimensions.ai/details/publication/pub.1112066973
    42 https://doi.org/10.1134/s0001433818090505
    43 schema:sdDatePublished 2019-04-11T09:04
    44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    45 schema:sdPublisher N39d7399fd012409eac300c9476c46289
    46 schema:url https://link.springer.com/10.1134%2FS0001433818090505
    47 sgo:license sg:explorer/license/
    48 sgo:sdDataset articles
    49 rdf:type schema:ScholarlyArticle
    50 N0a3a8590253b4104883b7b03908dabd6 rdf:first Neaf23207466e4ea3b3d10b072612a8b4
    51 rdf:rest N2afad7cff0404d5596ec5c0d3fbe5d9a
    52 N10d9c45ecf1c4163831830bc7255abbf rdf:first N9c893e88d26a430eab269c2f7e255af0
    53 rdf:rest rdf:nil
    54 N1565034229104a0f97b288d232d35086 schema:name doi
    55 schema:value 10.1134/s0001433818090505
    56 rdf:type schema:PropertyValue
    57 N2afad7cff0404d5596ec5c0d3fbe5d9a rdf:first Na5c8291ee40c4a6f9d9f9896a6155718
    58 rdf:rest N10d9c45ecf1c4163831830bc7255abbf
    59 N2b1a3da737f147e4be7695619099939e schema:name dimensions_id
    60 schema:value pub.1112066973
    61 rdf:type schema:PropertyValue
    62 N39d7399fd012409eac300c9476c46289 schema:name Springer Nature - SN SciGraph project
    63 rdf:type schema:Organization
    64 N4bc6e99dc7f345f98b812d47afe2f874 schema:volumeNumber 54
    65 rdf:type schema:PublicationVolume
    66 N66861704d52c40f294e6a4e3822efa63 rdf:first N86c4e6754a184a95a1bbfcce9eed5f0f
    67 rdf:rest N0a3a8590253b4104883b7b03908dabd6
    68 N86c4e6754a184a95a1bbfcce9eed5f0f schema:affiliation https://www.grid.ac/institutes/grid.4886.2
    69 schema:familyName Soloviev
    70 schema:givenName Al. A.
    71 rdf:type schema:Person
    72 N9c893e88d26a430eab269c2f7e255af0 schema:affiliation https://www.grid.ac/institutes/grid.465308.c
    73 schema:familyName Nikolova
    74 schema:givenName Yu. I.
    75 rdf:type schema:Person
    76 N9f59c77c1af24cb282a48ee24499b17f schema:affiliation https://www.grid.ac/institutes/grid.435352.6
    77 schema:familyName Soloviev
    78 schema:givenName An. A.
    79 rdf:type schema:Person
    80 Na5c8291ee40c4a6f9d9f9896a6155718 schema:affiliation https://www.grid.ac/institutes/grid.465308.c
    81 schema:familyName Nikolov
    82 schema:givenName B. P.
    83 rdf:type schema:Person
    84 Nc192e474e33f482e8a643a95bac90ce0 rdf:first N9f59c77c1af24cb282a48ee24499b17f
    85 rdf:rest N66861704d52c40f294e6a4e3822efa63
    86 Ndd5c16b09cf54d1f9264c8e2a327556d schema:issueNumber 9
    87 rdf:type schema:PublicationIssue
    88 Neaf23207466e4ea3b3d10b072612a8b4 schema:affiliation https://www.grid.ac/institutes/grid.435352.6
    89 schema:familyName Gvishiani
    90 schema:givenName A. D.
    91 rdf:type schema:Person
    92 Nfeff90e2761048a2a3bc1712bf0642e2 schema:name readcube_id
    93 schema:value 6652d38c7fc7a83429882b4b3b81ae6b2081c174935f9b9ae7fba89fa860878b
    94 rdf:type schema:PropertyValue
    95 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
    96 schema:name Information and Computing Sciences
    97 rdf:type schema:DefinedTerm
    98 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
    99 schema:name Information Systems
    100 rdf:type schema:DefinedTerm
    101 sg:journal.1136329 schema:issn 0001-4338
    102 1023-6317
    103 schema:name Izvestiya, Atmospheric and Oceanic Physics
    104 rdf:type schema:Periodical
    105 sg:pub.10.1007/s00024-010-0163-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032627899
    106 https://doi.org/10.1007/s00024-010-0163-4
    107 rdf:type schema:CreativeWork
    108 sg:pub.10.1007/s11069-013-0926-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032127117
    109 https://doi.org/10.1007/s11069-013-0926-1
    110 rdf:type schema:CreativeWork
    111 sg:pub.10.1023/b:casa.0000003505.56410.4f schema:sameAs https://app.dimensions.ai/details/publication/pub.1041540739
    112 https://doi.org/10.1023/b:casa.0000003505.56410.4f
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1134/s0001433814090060 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039901360
    115 https://doi.org/10.1134/s0001433814090060
    116 rdf:type schema:CreativeWork
    117 sg:pub.10.1134/s0742046317060021 schema:sameAs https://app.dimensions.ai/details/publication/pub.1101276827
    118 https://doi.org/10.1134/s0742046317060021
    119 rdf:type schema:CreativeWork
    120 sg:pub.10.1134/s1028334x13060159 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030827991
    121 https://doi.org/10.1134/s1028334x13060159
    122 rdf:type schema:CreativeWork
    123 sg:pub.10.1134/s1028334x16100032 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045614602
    124 https://doi.org/10.1134/s1028334x16100032
    125 rdf:type schema:CreativeWork
    126 sg:pub.10.1134/s1028334x17050038 schema:sameAs https://app.dimensions.ai/details/publication/pub.1086008423
    127 https://doi.org/10.1134/s1028334x17050038
    128 rdf:type schema:CreativeWork
    129 sg:pub.10.1134/s1069351313060049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014186824
    130 https://doi.org/10.1134/s1069351313060049
    131 rdf:type schema:CreativeWork
    132 sg:pub.10.1134/s1069351314020116 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021484272
    133 https://doi.org/10.1134/s1069351314020116
    134 rdf:type schema:CreativeWork
    135 sg:pub.10.1134/s1069351316040017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012850987
    136 https://doi.org/10.1134/s1069351316040017
    137 rdf:type schema:CreativeWork
    138 sg:pub.10.1134/s1069351316050141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005467582
    139 https://doi.org/10.1134/s1069351316050141
    140 rdf:type schema:CreativeWork
    141 sg:pub.10.1134/s106935131703003x schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594415
    142 https://doi.org/10.1134/s106935131703003x
    143 rdf:type schema:CreativeWork
    144 sg:pub.10.1134/s1069351317030120 schema:sameAs https://app.dimensions.ai/details/publication/pub.1085594975
    145 https://doi.org/10.1134/s1069351317030120
    146 rdf:type schema:CreativeWork
    147 sg:pub.10.1186/s40623-016-0404-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009078295
    148 https://doi.org/10.1186/s40623-016-0404-6
    149 rdf:type schema:CreativeWork
    150 sg:pub.10.3103/s0747923913020047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033089044
    151 https://doi.org/10.3103/s0747923913020047
    152 rdf:type schema:CreativeWork
    153 https://doi.org/10.1016/j.epsl.2007.04.006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018304766
    154 rdf:type schema:CreativeWork
    155 https://doi.org/10.17580/gzh.2015.10.16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1068364855
    156 rdf:type schema:CreativeWork
    157 https://doi.org/10.2205/2011es000501 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069289948
    158 rdf:type schema:CreativeWork
    159 https://doi.org/10.2205/2015es000559 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069290128
    160 rdf:type schema:CreativeWork
    161 https://doi.org/10.2205/2016es000587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069290157
    162 rdf:type schema:CreativeWork
    163 https://doi.org/10.30638/eemj.2013.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1106167123
    164 rdf:type schema:CreativeWork
    165 https://doi.org/10.5334/dsj-2016-016 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028431911
    166 rdf:type schema:CreativeWork
    167 https://www.grid.ac/institutes/grid.435352.6 schema:alternateName Schmidt Institute of Physics of the Earth
    168 schema:name Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
    169 Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, Moscow, Russia
    170 rdf:type schema:Organization
    171 https://www.grid.ac/institutes/grid.465308.c schema:alternateName Geophysical Center
    172 schema:name Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
    173 rdf:type schema:Organization
    174 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
    175 schema:name Geophysical Center of the Russian Academy of Sciences, Moscow, Russia
    176 Institute of Earthquake Prediction Theory and Mathematical Geophysics, Russian Academy of Sciences, Moscow, Russia
    177 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...