A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2016-12

AUTHORS

A. A. Aleskerova, A. A. Kubryakov, S. V. Stanichny

ABSTRACT

The present work is devoted to the development of a retrieval algorithm for the sea surface temperature from the two-channel measurements of the Landsat-8 satellite on the basis of a comparison with MODIS satellite data. The algorithm makes it possible to reconstruct the surface temperature with a 100 m resolution, which enables analysis of the spatial structure of various phenomena on the ocean surface at small scales (upwelling, submesoscale vortices, etc.). The magnitude of the standard deviation between the reconstructed temperature and the temperature derived from the MODIS satellite is ~0.58°C. The sources of inconsistency between temperatures retrieved from the MODIS and Landsat-8 measurements were investigated: diurnal temperature variation, which leads to an increase in the standard deviation in the summer period because of the mismatch in time (~2 hours) between measurements; the presence of specific bands in the Landsat data, which is probably related to instrumental errors of the device. More... »

PAGES

1155-1161

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0001433816090048

DOI

http://dx.doi.org/10.1134/s0001433816090048

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1083761050


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0909", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Geomatic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Marine Hydrophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.466879.2", 
          "name": [
            "Marine Hydrophysical Institute, Sevastopol, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aleskerova", 
        "givenName": "A. A.", 
        "id": "sg:person.010627446347.25", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010627446347.25"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Marine Hydrophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.466879.2", 
          "name": [
            "Marine Hydrophysical Institute, Sevastopol, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kubryakov", 
        "givenName": "A. A.", 
        "id": "sg:person.07665021717.38", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665021717.38"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Marine Hydrophysical Institute", 
          "id": "https://www.grid.ac/institutes/grid.466879.2", 
          "name": [
            "Marine Hydrophysical Institute, Sevastopol, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stanichny", 
        "givenName": "S. V.", 
        "id": "sg:person.010723720160.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723720160.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1029/jc095ic08p13341", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009282195"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3390/rs70101135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009285298"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-8681-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538412", 
          "https://doi.org/10.1007/978-90-481-8681-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-90-481-8681-5_16", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015538412", 
          "https://doi.org/10.1007/978-90-481-8681-5_16"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0034-4257(70)80002-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018269730"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/jc090ic06p11587", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042149164"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/2013jc009716", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043895385"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2016-12", 
    "datePublishedReg": "2016-12-01", 
    "description": "The present work is devoted to the development of a retrieval algorithm for the sea surface temperature from the two-channel measurements of the Landsat-8 satellite on the basis of a comparison with MODIS satellite data. The algorithm makes it possible to reconstruct the surface temperature with a 100 m resolution, which enables analysis of the spatial structure of various phenomena on the ocean surface at small scales (upwelling, submesoscale vortices, etc.). The magnitude of the standard deviation between the reconstructed temperature and the temperature derived from the MODIS satellite is ~0.58\u00b0C. The sources of inconsistency between temperatures retrieved from the MODIS and Landsat-8 measurements were investigated: diurnal temperature variation, which leads to an increase in the standard deviation in the summer period because of the mismatch in time (~2 hours) between measurements; the presence of specific bands in the Landsat data, which is probably related to instrumental errors of the device.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0001433816090048", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136329", 
        "issn": [
          "0001-4338", 
          "1023-6317"
        ], 
        "name": "Izvestiya, Atmospheric and Oceanic Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "52"
      }
    ], 
    "name": "A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements", 
    "pagination": "1155-1161", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d404019ce8a8f6b732f788c1fff37f5f0ed3367b065f974395eea0e58e9ad24f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0001433816090048"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1083761050"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0001433816090048", 
      "https://app.dimensions.ai/details/publication/pub.1083761050"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T13:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000367_0000000367/records_88255_00000001.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://link.springer.com/10.1134%2FS0001433816090048"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001433816090048'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001433816090048'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001433816090048'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001433816090048'


 

This table displays all metadata directly associated to this object as RDF triples.

94 TRIPLES      21 PREDICATES      33 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0001433816090048 schema:about anzsrc-for:09
2 anzsrc-for:0909
3 schema:author Nd2cb5a03e27545759ffe8c604ebb785d
4 schema:citation sg:pub.10.1007/978-90-481-8681-5_16
5 https://doi.org/10.1002/2013jc009716
6 https://doi.org/10.1016/s0034-4257(70)80002-5
7 https://doi.org/10.1029/jc090ic06p11587
8 https://doi.org/10.1029/jc095ic08p13341
9 https://doi.org/10.3390/rs70101135
10 schema:datePublished 2016-12
11 schema:datePublishedReg 2016-12-01
12 schema:description The present work is devoted to the development of a retrieval algorithm for the sea surface temperature from the two-channel measurements of the Landsat-8 satellite on the basis of a comparison with MODIS satellite data. The algorithm makes it possible to reconstruct the surface temperature with a 100 m resolution, which enables analysis of the spatial structure of various phenomena on the ocean surface at small scales (upwelling, submesoscale vortices, etc.). The magnitude of the standard deviation between the reconstructed temperature and the temperature derived from the MODIS satellite is ~0.58°C. The sources of inconsistency between temperatures retrieved from the MODIS and Landsat-8 measurements were investigated: diurnal temperature variation, which leads to an increase in the standard deviation in the summer period because of the mismatch in time (~2 hours) between measurements; the presence of specific bands in the Landsat data, which is probably related to instrumental errors of the device.
13 schema:genre research_article
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf N3e3b6d40f44d4a68a9bbf79f30bb3bbf
17 Nd94ecde745d64f22bc4d3832cc22ee1c
18 sg:journal.1136329
19 schema:name A two-channel method for retrieval of the Black Sea surface temperature from Landsat-8 measurements
20 schema:pagination 1155-1161
21 schema:productId N10c01b3d2bba4d61bce95f18bbc0308b
22 N563f91036b554af28008beca2bc8e022
23 Na7a471ff64bc4426bff898156e579dd4
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083761050
25 https://doi.org/10.1134/s0001433816090048
26 schema:sdDatePublished 2019-04-11T13:12
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N0708e6a99cb64df386cdaacc2e18df8a
29 schema:url https://link.springer.com/10.1134%2FS0001433816090048
30 sgo:license sg:explorer/license/
31 sgo:sdDataset articles
32 rdf:type schema:ScholarlyArticle
33 N0708e6a99cb64df386cdaacc2e18df8a schema:name Springer Nature - SN SciGraph project
34 rdf:type schema:Organization
35 N10c01b3d2bba4d61bce95f18bbc0308b schema:name doi
36 schema:value 10.1134/s0001433816090048
37 rdf:type schema:PropertyValue
38 N3e3b6d40f44d4a68a9bbf79f30bb3bbf schema:issueNumber 9
39 rdf:type schema:PublicationIssue
40 N563f91036b554af28008beca2bc8e022 schema:name dimensions_id
41 schema:value pub.1083761050
42 rdf:type schema:PropertyValue
43 N8cd7c023cd034c71968c93c1d0068601 rdf:first sg:person.07665021717.38
44 rdf:rest Nf045005d52774d56bb208b18a350b8ba
45 Na7a471ff64bc4426bff898156e579dd4 schema:name readcube_id
46 schema:value d404019ce8a8f6b732f788c1fff37f5f0ed3367b065f974395eea0e58e9ad24f
47 rdf:type schema:PropertyValue
48 Nd2cb5a03e27545759ffe8c604ebb785d rdf:first sg:person.010627446347.25
49 rdf:rest N8cd7c023cd034c71968c93c1d0068601
50 Nd94ecde745d64f22bc4d3832cc22ee1c schema:volumeNumber 52
51 rdf:type schema:PublicationVolume
52 Nf045005d52774d56bb208b18a350b8ba rdf:first sg:person.010723720160.71
53 rdf:rest rdf:nil
54 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
55 schema:name Engineering
56 rdf:type schema:DefinedTerm
57 anzsrc-for:0909 schema:inDefinedTermSet anzsrc-for:
58 schema:name Geomatic Engineering
59 rdf:type schema:DefinedTerm
60 sg:journal.1136329 schema:issn 0001-4338
61 1023-6317
62 schema:name Izvestiya, Atmospheric and Oceanic Physics
63 rdf:type schema:Periodical
64 sg:person.010627446347.25 schema:affiliation https://www.grid.ac/institutes/grid.466879.2
65 schema:familyName Aleskerova
66 schema:givenName A. A.
67 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010627446347.25
68 rdf:type schema:Person
69 sg:person.010723720160.71 schema:affiliation https://www.grid.ac/institutes/grid.466879.2
70 schema:familyName Stanichny
71 schema:givenName S. V.
72 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010723720160.71
73 rdf:type schema:Person
74 sg:person.07665021717.38 schema:affiliation https://www.grid.ac/institutes/grid.466879.2
75 schema:familyName Kubryakov
76 schema:givenName A. A.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07665021717.38
78 rdf:type schema:Person
79 sg:pub.10.1007/978-90-481-8681-5_16 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015538412
80 https://doi.org/10.1007/978-90-481-8681-5_16
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/2013jc009716 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043895385
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1016/s0034-4257(70)80002-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018269730
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1029/jc090ic06p11587 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042149164
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1029/jc095ic08p13341 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009282195
89 rdf:type schema:CreativeWork
90 https://doi.org/10.3390/rs70101135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009285298
91 rdf:type schema:CreativeWork
92 https://www.grid.ac/institutes/grid.466879.2 schema:alternateName Marine Hydrophysical Institute
93 schema:name Marine Hydrophysical Institute, Sevastopol, Russia
94 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...