Estimation of the influence that natural fires have on air pollution in the region of Moscow megalopolis based on the ... View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2011-08

AUTHORS

I. B. Konovalov, M. Beekmann, I. N. Kuznetsova, A. A. Glazkova, A. V. Vasil’eva, R. B. Zaripov

ABSTRACT

Satellite measurements of the fire radiation power, measurements of atmospheric pollution in the network of GPU Mosekomonitoring stations, and the modern CHIMERE chemical transport model (CHIMERE CTM) are used for estimating the influence that forest fires have on the air pollution level in the Moscow megalopolis region during the summer of 2007. The method by which the radiation power caused by natural fires determined from satellite measurements is converted into emissions of individual model species is described. General problems related to the optimization of estimates of fire emission and the effects caused by them based on the combined use of measurement data on the composition of the atmosphere and the CTM are considered using a concrete example. It is shown, in particular, that the use of the standard least squares method for the optimization of fire emissions from leads in the general case to obtaining biased (underestimated) estimates. The results of calculations consistent with measurements show that forest fires near Moscow can occasionally be responsible for a considerable part of the air pollution observed in Moscow and its vicinities, and they can be the main reason for the high level of atmospheric pollution in some neighboring regions. More... »

PAGES

457

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/s0001433811040062

DOI

http://dx.doi.org/10.1134/s0001433811040062

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1028128437


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, Russian Academy of Sciences, ul. Ul\u2019yanova 46, 603950, Nizhni Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Konovalov", 
        "givenName": "I. B.", 
        "id": "sg:person.07374072646.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Laboratoire Interuniversitaire des Syst\u00e8mes Atmosph\u00e9riques", 
          "id": "https://www.grid.ac/institutes/grid.464159.b", 
          "name": [
            "Interuniversity Laboratory of Atmospheric Systems, Krete, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Beekmann", 
        "givenName": "M.", 
        "id": "sg:person.010045072003.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gidrometsentr of Russia, Bol\u2019shoi Predtechenskii per. 11-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kuznetsova", 
        "givenName": "I. N.", 
        "id": "sg:person.015455205355.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gidrometsentr of Russia, Bol\u2019shoi Predtechenskii per. 11-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Glazkova", 
        "givenName": "A. A.", 
        "id": "sg:person.016405671352.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, 119017, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vasil\u2019eva", 
        "givenName": "A. V.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Gidrometsentr of Russia, Bol\u2019shoi Predtechenskii per. 11-13, 123242, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zaripov", 
        "givenName": "R. B.", 
        "id": "sg:person.07750161141.11", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00122760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000170108", 
          "https://doi.org/10.1007/bf00122760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00122760", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000170108", 
          "https://doi.org/10.1007/bf00122760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-5-169-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003318076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-5-169-2005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003318076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-8-2623-2008", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004101875"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-7-4043-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004262527"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-4897-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011647276"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.02.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012952913"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000gb001382", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014366659"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1352-2310(01)00451-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017606457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1024856010060084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019314437", 
          "https://doi.org/10.1134/s1024856010060084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/s1024856010060084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019314437", 
          "https://doi.org/10.1134/s1024856010060084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00137988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023435291", 
          "https://doi.org/10.1007/bf00137988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00137988", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023435291", 
          "https://doi.org/10.1007/bf00137988"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-9-6833-2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026673648"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.rse.2008.05.013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029765174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0074-6142(02)80219-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037521363"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/2000jd000053", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045901728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.5194/acp-7-5175-2007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049825861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.atmosenv.2006.07.039", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052748143"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.857328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609583"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tgrs.2005.857328", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061609583"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2011-08", 
    "datePublishedReg": "2011-08-01", 
    "description": "Satellite measurements of the fire radiation power, measurements of atmospheric pollution in the network of GPU Mosekomonitoring stations, and the modern CHIMERE chemical transport model (CHIMERE CTM) are used for estimating the influence that forest fires have on the air pollution level in the Moscow megalopolis region during the summer of 2007. The method by which the radiation power caused by natural fires determined from satellite measurements is converted into emissions of individual model species is described. General problems related to the optimization of estimates of fire emission and the effects caused by them based on the combined use of measurement data on the composition of the atmosphere and the CTM are considered using a concrete example. It is shown, in particular, that the use of the standard least squares method for the optimization of fire emissions from leads in the general case to obtaining biased (underestimated) estimates. The results of calculations consistent with measurements show that forest fires near Moscow can occasionally be responsible for a considerable part of the air pollution observed in Moscow and its vicinities, and they can be the main reason for the high level of atmospheric pollution in some neighboring regions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/s0001433811040062", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136329", 
        "issn": [
          "0001-4338", 
          "1023-6317"
        ], 
        "name": "Izvestiya, Atmospheric and Oceanic Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "4", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "name": "Estimation of the influence that natural fires have on air pollution in the region of Moscow megalopolis based on the combined use of chemical transport model and measurement data", 
    "pagination": "457", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "85ff5d6ed2feb31926123f854ab307feea1f5138efb35d378e4d811160a2484d"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/s0001433811040062"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1028128437"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/s0001433811040062", 
      "https://app.dimensions.ai/details/publication/pub.1028128437"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T21:34", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/S0001433811040062"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/s0001433811040062'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/s0001433811040062'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/s0001433811040062'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/s0001433811040062'


 

This table displays all metadata directly associated to this object as RDF triples.

161 TRIPLES      21 PREDICATES      44 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/s0001433811040062 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Ne2094b778f434b1ab55fa657f88a9daf
4 schema:citation sg:pub.10.1007/bf00122760
5 sg:pub.10.1007/bf00137988
6 sg:pub.10.1134/s1024856010060084
7 https://doi.org/10.1016/j.atmosenv.2006.02.010
8 https://doi.org/10.1016/j.atmosenv.2006.07.039
9 https://doi.org/10.1016/j.rse.2008.05.013
10 https://doi.org/10.1016/s0074-6142(02)80219-4
11 https://doi.org/10.1016/s1352-2310(01)00451-4
12 https://doi.org/10.1029/2000gb001382
13 https://doi.org/10.1029/2000jd000053
14 https://doi.org/10.1109/tgrs.2005.857328
15 https://doi.org/10.5194/acp-5-169-2005
16 https://doi.org/10.5194/acp-7-4043-2007
17 https://doi.org/10.5194/acp-7-5175-2007
18 https://doi.org/10.5194/acp-8-2623-2008
19 https://doi.org/10.5194/acp-9-4897-2009
20 https://doi.org/10.5194/acp-9-6833-2009
21 schema:datePublished 2011-08
22 schema:datePublishedReg 2011-08-01
23 schema:description Satellite measurements of the fire radiation power, measurements of atmospheric pollution in the network of GPU Mosekomonitoring stations, and the modern CHIMERE chemical transport model (CHIMERE CTM) are used for estimating the influence that forest fires have on the air pollution level in the Moscow megalopolis region during the summer of 2007. The method by which the radiation power caused by natural fires determined from satellite measurements is converted into emissions of individual model species is described. General problems related to the optimization of estimates of fire emission and the effects caused by them based on the combined use of measurement data on the composition of the atmosphere and the CTM are considered using a concrete example. It is shown, in particular, that the use of the standard least squares method for the optimization of fire emissions from leads in the general case to obtaining biased (underestimated) estimates. The results of calculations consistent with measurements show that forest fires near Moscow can occasionally be responsible for a considerable part of the air pollution observed in Moscow and its vicinities, and they can be the main reason for the high level of atmospheric pollution in some neighboring regions.
24 schema:genre research_article
25 schema:inLanguage en
26 schema:isAccessibleForFree false
27 schema:isPartOf Ne87a4682b3f94fbfa806351dd7f38713
28 Nf5b10b69dfe74c30864096f81a2c99dd
29 sg:journal.1136329
30 schema:name Estimation of the influence that natural fires have on air pollution in the region of Moscow megalopolis based on the combined use of chemical transport model and measurement data
31 schema:pagination 457
32 schema:productId N404b0a37a1e64aa498a3f278de670c7b
33 N6a79e7808a0a4171b40c09f987c271e5
34 Ne20e6070eed94469ba56cb303a4520d6
35 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028128437
36 https://doi.org/10.1134/s0001433811040062
37 schema:sdDatePublished 2019-04-10T21:34
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher Nfc5c7f33180e49af9c61635c26b86db6
40 schema:url http://link.springer.com/10.1134/S0001433811040062
41 sgo:license sg:explorer/license/
42 sgo:sdDataset articles
43 rdf:type schema:ScholarlyArticle
44 N13696407ab394517853076d1366455e8 schema:name Gidrometsentr of Russia, Bol’shoi Predtechenskii per. 11-13, 123242, Moscow, Russia
45 rdf:type schema:Organization
46 N404b0a37a1e64aa498a3f278de670c7b schema:name doi
47 schema:value 10.1134/s0001433811040062
48 rdf:type schema:PropertyValue
49 N40a14159c72c45cb936a78d274ebaad4 rdf:first sg:person.015455205355.88
50 rdf:rest Ne860cec2f9e445e29c7bc932d1628a9e
51 N48fb0efce02c43b6b88543ba5a178c12 schema:name Gidrometsentr of Russia, Bol’shoi Predtechenskii per. 11-13, 123242, Moscow, Russia
52 rdf:type schema:Organization
53 N6a79e7808a0a4171b40c09f987c271e5 schema:name dimensions_id
54 schema:value pub.1028128437
55 rdf:type schema:PropertyValue
56 N93e4fcc73a07453992e1f056e434d75e rdf:first Na7b57e3419974113be5756e61292c7ea
57 rdf:rest Naf576551098d43fd8649a02e9eb1c014
58 Na7b57e3419974113be5756e61292c7ea schema:affiliation https://www.grid.ac/institutes/grid.4886.2
59 schema:familyName Vasil’eva
60 schema:givenName A. V.
61 rdf:type schema:Person
62 Naf576551098d43fd8649a02e9eb1c014 rdf:first sg:person.07750161141.11
63 rdf:rest rdf:nil
64 Nc96053df404341178fc92f1a951297e9 rdf:first sg:person.010045072003.34
65 rdf:rest N40a14159c72c45cb936a78d274ebaad4
66 Ne2094b778f434b1ab55fa657f88a9daf rdf:first sg:person.07374072646.64
67 rdf:rest Nc96053df404341178fc92f1a951297e9
68 Ne20e6070eed94469ba56cb303a4520d6 schema:name readcube_id
69 schema:value 85ff5d6ed2feb31926123f854ab307feea1f5138efb35d378e4d811160a2484d
70 rdf:type schema:PropertyValue
71 Ne860cec2f9e445e29c7bc932d1628a9e rdf:first sg:person.016405671352.19
72 rdf:rest N93e4fcc73a07453992e1f056e434d75e
73 Ne87a4682b3f94fbfa806351dd7f38713 schema:volumeNumber 47
74 rdf:type schema:PublicationVolume
75 Nedb0fd5f7fb44540a340d7a04bcda243 schema:name Gidrometsentr of Russia, Bol’shoi Predtechenskii per. 11-13, 123242, Moscow, Russia
76 rdf:type schema:Organization
77 Nf5b10b69dfe74c30864096f81a2c99dd schema:issueNumber 4
78 rdf:type schema:PublicationIssue
79 Nfc5c7f33180e49af9c61635c26b86db6 schema:name Springer Nature - SN SciGraph project
80 rdf:type schema:Organization
81 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
82 schema:name Physical Sciences
83 rdf:type schema:DefinedTerm
84 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
85 schema:name Other Physical Sciences
86 rdf:type schema:DefinedTerm
87 sg:journal.1136329 schema:issn 0001-4338
88 1023-6317
89 schema:name Izvestiya, Atmospheric and Oceanic Physics
90 rdf:type schema:Periodical
91 sg:person.010045072003.34 schema:affiliation https://www.grid.ac/institutes/grid.464159.b
92 schema:familyName Beekmann
93 schema:givenName M.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010045072003.34
95 rdf:type schema:Person
96 sg:person.015455205355.88 schema:affiliation N13696407ab394517853076d1366455e8
97 schema:familyName Kuznetsova
98 schema:givenName I. N.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015455205355.88
100 rdf:type schema:Person
101 sg:person.016405671352.19 schema:affiliation N48fb0efce02c43b6b88543ba5a178c12
102 schema:familyName Glazkova
103 schema:givenName A. A.
104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016405671352.19
105 rdf:type schema:Person
106 sg:person.07374072646.64 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
107 schema:familyName Konovalov
108 schema:givenName I. B.
109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07374072646.64
110 rdf:type schema:Person
111 sg:person.07750161141.11 schema:affiliation Nedb0fd5f7fb44540a340d7a04bcda243
112 schema:familyName Zaripov
113 schema:givenName R. B.
114 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07750161141.11
115 rdf:type schema:Person
116 sg:pub.10.1007/bf00122760 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000170108
117 https://doi.org/10.1007/bf00122760
118 rdf:type schema:CreativeWork
119 sg:pub.10.1007/bf00137988 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023435291
120 https://doi.org/10.1007/bf00137988
121 rdf:type schema:CreativeWork
122 sg:pub.10.1134/s1024856010060084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019314437
123 https://doi.org/10.1134/s1024856010060084
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1016/j.atmosenv.2006.02.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012952913
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1016/j.atmosenv.2006.07.039 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052748143
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1016/j.rse.2008.05.013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029765174
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1016/s0074-6142(02)80219-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037521363
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1016/s1352-2310(01)00451-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017606457
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1029/2000gb001382 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014366659
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1029/2000jd000053 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045901728
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1109/tgrs.2005.857328 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061609583
140 rdf:type schema:CreativeWork
141 https://doi.org/10.5194/acp-5-169-2005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003318076
142 rdf:type schema:CreativeWork
143 https://doi.org/10.5194/acp-7-4043-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004262527
144 rdf:type schema:CreativeWork
145 https://doi.org/10.5194/acp-7-5175-2007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049825861
146 rdf:type schema:CreativeWork
147 https://doi.org/10.5194/acp-8-2623-2008 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004101875
148 rdf:type schema:CreativeWork
149 https://doi.org/10.5194/acp-9-4897-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011647276
150 rdf:type schema:CreativeWork
151 https://doi.org/10.5194/acp-9-6833-2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026673648
152 rdf:type schema:CreativeWork
153 https://www.grid.ac/institutes/grid.410472.4 schema:alternateName Institute of Applied Physics
154 schema:name Institute of Applied Physics, Russian Academy of Sciences, ul. Ul’yanova 46, 603950, Nizhni Novgorod, Russia
155 rdf:type schema:Organization
156 https://www.grid.ac/institutes/grid.464159.b schema:alternateName Laboratoire Interuniversitaire des Systèmes Atmosphériques
157 schema:name Interuniversity Laboratory of Atmospheric Systems, Krete, France
158 rdf:type schema:Organization
159 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
160 schema:name Obukhov Institute of Atmospheric Physics, Russian Academy of Sciences, Pyzhevskii per. 3, 119017, Moscow, Russia
161 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...