Precocious asymptopia for charm from the running BFKL View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1999-02

AUTHORS

N. N. Nikolaev, V. R. Zoller

ABSTRACT

The running BFKL equation gives rise to a series of moving poles in the complex j plane. The corresponding eigenfunctions (color dipole cross sections) are oscillatory functions of the color dipole size r. The first nodes for all subleading solutions (color dipole cross sections) are clustered at r1∼0.1 fm. Therefore the processes dominated by dipole sizes r∼r1 are free of subleading BFKL corrections. An example of practical importance is the leptoproduction of charm. Over a wide range of Q2 the calculated F2cc(x,Q2) is exhausted by the leading BFKL pole and gives a perfect description of the experimental data. More... »

PAGES

187-191

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.568004

DOI

http://dx.doi.org/10.1134/1.568004

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037409166


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.436090.8", 
          "name": [
            "Institut f\u00fcr Kernphysik, Forschungszentrum J\u00fclich, D-52425, J\u00fclich, Germany", 
            "L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nikolaev", 
        "givenName": "N. N.", 
        "id": "sg:person.011254113621.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Theoretical and Experimental Physics, 117218, Moscow, Russia", 
          "id": "http://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, 117218, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zoller", 
        "givenName": "V. R.", 
        "id": "sg:person.07653611431.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/s002880050281", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030488224", 
          "https://doi.org/10.1007/s002880050281"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01483577", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012423985", 
          "https://doi.org/10.1007/bf01483577"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567491", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013314149", 
          "https://doi.org/10.1134/1.567491"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-02", 
    "datePublishedReg": "1999-02-01", 
    "description": "The running BFKL equation gives rise to a series of moving poles in the complex j plane. The corresponding eigenfunctions (color dipole cross sections) are oscillatory functions of the color dipole size r. The first nodes for all subleading solutions (color dipole cross sections) are clustered at r1\u223c0.1 fm. Therefore the processes dominated by dipole sizes r\u223cr1 are free of subleading BFKL corrections. An example of practical importance is the leptoproduction of charm. Over a wide range of Q2 the calculated F2cc(x,Q2) is exhausted by the leading BFKL pole and gives a perfect description of the experimental data.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.568004", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "69"
      }
    ], 
    "keywords": [
      "wide range", 
      "BFKL equation", 
      "rise", 
      "pole", 
      "corresponding eigenfunctions", 
      "oscillatory function", 
      "function", 
      "size r.", 
      "R.", 
      "first node", 
      "FM", 
      "process", 
      "size", 
      "example", 
      "practical importance", 
      "importance", 
      "range", 
      "description", 
      "data", 
      "equations", 
      "series", 
      "plane", 
      "eigenfunctions", 
      "nodes", 
      "solution", 
      "dipole size", 
      "correction", 
      "charm", 
      "Q2", 
      "perfect description", 
      "experimental data", 
      "asymptopia", 
      "BFKL", 
      "complex j plane", 
      "j plane", 
      "color dipole size r.", 
      "dipole size r.", 
      "subleading solutions", 
      "BFKL corrections", 
      "leptoproduction of charm", 
      "leptoproduction", 
      "BFKL pole", 
      "Precocious asymptopia"
    ], 
    "name": "Precocious asymptopia for charm from the running BFKL", 
    "pagination": "187-191", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037409166"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.568004"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.568004", 
      "https://app.dimensions.ai/details/publication/pub.1037409166"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-01-01T18:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_322.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.568004"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.568004'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.568004'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.568004'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.568004'


 

This table displays all metadata directly associated to this object as RDF triples.

124 TRIPLES      22 PREDICATES      72 URIs      61 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.568004 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nca6fdbf58782483790abced91fe618a1
4 schema:citation sg:pub.10.1007/bf01483577
5 sg:pub.10.1007/s002880050281
6 sg:pub.10.1134/1.567491
7 schema:datePublished 1999-02
8 schema:datePublishedReg 1999-02-01
9 schema:description The running BFKL equation gives rise to a series of moving poles in the complex j plane. The corresponding eigenfunctions (color dipole cross sections) are oscillatory functions of the color dipole size r. The first nodes for all subleading solutions (color dipole cross sections) are clustered at r1∼0.1 fm. Therefore the processes dominated by dipole sizes r∼r1 are free of subleading BFKL corrections. An example of practical importance is the leptoproduction of charm. Over a wide range of Q2 the calculated F2cc(x,Q2) is exhausted by the leading BFKL pole and gives a perfect description of the experimental data.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree true
13 schema:isPartOf N05245d37d14c4880abd118fb6b990156
14 N05ef33e013f34cbe86e37219046162a3
15 sg:journal.1052174
16 schema:keywords BFKL
17 BFKL corrections
18 BFKL equation
19 BFKL pole
20 FM
21 Precocious asymptopia
22 Q2
23 R.
24 asymptopia
25 charm
26 color dipole size r.
27 complex j plane
28 correction
29 corresponding eigenfunctions
30 data
31 description
32 dipole size
33 dipole size r.
34 eigenfunctions
35 equations
36 example
37 experimental data
38 first node
39 function
40 importance
41 j plane
42 leptoproduction
43 leptoproduction of charm
44 nodes
45 oscillatory function
46 perfect description
47 plane
48 pole
49 practical importance
50 process
51 range
52 rise
53 series
54 size
55 size r.
56 solution
57 subleading solutions
58 wide range
59 schema:name Precocious asymptopia for charm from the running BFKL
60 schema:pagination 187-191
61 schema:productId N44fd8be6a69249619698b9a25ebff9bb
62 N47ad5009b381446b81228c61b797ebc0
63 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037409166
64 https://doi.org/10.1134/1.568004
65 schema:sdDatePublished 2022-01-01T18:10
66 schema:sdLicense https://scigraph.springernature.com/explorer/license/
67 schema:sdPublisher Nc14f55b4aaa646fdb6029421a94cf091
68 schema:url https://doi.org/10.1134/1.568004
69 sgo:license sg:explorer/license/
70 sgo:sdDataset articles
71 rdf:type schema:ScholarlyArticle
72 N05245d37d14c4880abd118fb6b990156 schema:issueNumber 3
73 rdf:type schema:PublicationIssue
74 N05ef33e013f34cbe86e37219046162a3 schema:volumeNumber 69
75 rdf:type schema:PublicationVolume
76 N11ddbf60e2df4808873c85c79dded4b6 rdf:first sg:person.07653611431.49
77 rdf:rest rdf:nil
78 N44fd8be6a69249619698b9a25ebff9bb schema:name doi
79 schema:value 10.1134/1.568004
80 rdf:type schema:PropertyValue
81 N47ad5009b381446b81228c61b797ebc0 schema:name dimensions_id
82 schema:value pub.1037409166
83 rdf:type schema:PropertyValue
84 Nc14f55b4aaa646fdb6029421a94cf091 schema:name Springer Nature - SN SciGraph project
85 rdf:type schema:Organization
86 Nca6fdbf58782483790abced91fe618a1 rdf:first sg:person.011254113621.16
87 rdf:rest N11ddbf60e2df4808873c85c79dded4b6
88 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
89 schema:name Mathematical Sciences
90 rdf:type schema:DefinedTerm
91 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
92 schema:name Pure Mathematics
93 rdf:type schema:DefinedTerm
94 sg:journal.1052174 schema:issn 0021-3640
95 1090-6487
96 schema:name JETP Letters
97 schema:publisher Pleiades Publishing
98 rdf:type schema:Periodical
99 sg:person.011254113621.16 schema:affiliation grid-institutes:grid.436090.8
100 schema:familyName Nikolaev
101 schema:givenName N. N.
102 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011254113621.16
103 rdf:type schema:Person
104 sg:person.07653611431.49 schema:affiliation grid-institutes:grid.21626.31
105 schema:familyName Zoller
106 schema:givenName V. R.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07653611431.49
108 rdf:type schema:Person
109 sg:pub.10.1007/bf01483577 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012423985
110 https://doi.org/10.1007/bf01483577
111 rdf:type schema:CreativeWork
112 sg:pub.10.1007/s002880050281 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030488224
113 https://doi.org/10.1007/s002880050281
114 rdf:type schema:CreativeWork
115 sg:pub.10.1134/1.567491 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013314149
116 https://doi.org/10.1134/1.567491
117 rdf:type schema:CreativeWork
118 grid-institutes:grid.21626.31 schema:alternateName Institute of Theoretical and Experimental Physics, 117218, Moscow, Russia
119 schema:name Institute of Theoretical and Experimental Physics, 117218, Moscow, Russia
120 rdf:type schema:Organization
121 grid-institutes:grid.436090.8 schema:alternateName L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia
122 schema:name Institut für Kernphysik, Forschungszentrum Jülich, D-52425, Jülich, Germany
123 L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia
124 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...