Phase-sensitive reentrance into the normal state of mesoscopic SNS structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

V. T. Petrashov, R. Sh. Shaikhaidarov, P. Delsing, T. Claeson

ABSTRACT

Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference Δϕ between the NS boundaries approaches the values Δϕ =(2n+1)π, n=0,1,2,..., irrespective of temperature and applied voltage. For Δϕ =2nπ and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values Δϕ=2nπ, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the “weak” proximity effect approximation. More... »

PAGES

513-520

References to SciGraph publications

Journal

TITLE

JETP Letters

ISSUE

7

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.567691

DOI

http://dx.doi.org/10.1134/1.567691

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052526948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Physics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK", 
            "Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrashov", 
        "givenName": "V. T.", 
        "id": "sg:person.01032325103.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032325103.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaikhaidarov", 
        "givenName": "R. Sh.", 
        "id": "sg:person.0716076503.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716076503.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delsing", 
        "givenName": "P.", 
        "id": "sg:person.0616721157.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616721157.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Claeson", 
        "givenName": "T.", 
        "id": "sg:person.016542473375.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542473375.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/8/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025536358", 
          "https://doi.org/10.1134/1.567256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027638178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027638178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1145385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057673448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.11184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.11184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.580346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062190393"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference \u0394\u03d5 between the NS boundaries approaches the values \u0394\u03d5 =(2n+1)\u03c0, n=0,1,2,..., irrespective of temperature and applied voltage. For \u0394\u03d5 =2n\u03c0 and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values \u0394\u03d5=2n\u03c0, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the \u201cweak\u201d proximity effect approximation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.567691", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Phase-sensitive reentrance into the normal state of mesoscopic SNS structures", 
    "pagination": "513-520", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa34503f88274d9ae0fa3752c2b967fcb83eab6b12adaa5e5327f9c0af621459"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.567691"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052526948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.567691", 
      "https://app.dimensions.ai/details/publication/pub.1052526948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.567691"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.567691'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.567691 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N73c5fa39e8b6463ba4cffd9a75143c41
4 schema:citation sg:pub.10.1134/1.567256
5 https://doi.org/10.1063/1.1145385
6 https://doi.org/10.1088/0953-8984/8/4/001
7 https://doi.org/10.1103/physrevb.1.327
8 https://doi.org/10.1103/physrevb.53.9267
9 https://doi.org/10.1103/physrevb.56.11184
10 https://doi.org/10.1103/physrevlett.73.2488
11 https://doi.org/10.1103/physrevlett.74.5268
12 https://doi.org/10.1103/physrevlett.74.602
13 https://doi.org/10.1103/physrevlett.76.823
14 https://doi.org/10.1103/physrevlett.77.4950
15 https://doi.org/10.1116/1.580346
16 schema:datePublished 1998-04
17 schema:datePublishedReg 1998-04-01
18 schema:description Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference Δϕ between the NS boundaries approaches the values Δϕ =(2n+1)π, n=0,1,2,..., irrespective of temperature and applied voltage. For Δϕ =2nπ and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values Δϕ=2nπ, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the “weak” proximity effect approximation.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf Nc2b4baa7447c4de6b7b3fa9e52212f63
23 Ncd675533ac9544d083c7f16ed453f712
24 sg:journal.1052174
25 schema:name Phase-sensitive reentrance into the normal state of mesoscopic SNS structures
26 schema:pagination 513-520
27 schema:productId N06ede380a7db47cba1f458699df55e76
28 N372ecdcab8a641f6b9dafd4cb03ae06c
29 Ne3e356fd9254496c93d081efbd050cab
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052526948
31 https://doi.org/10.1134/1.567691
32 schema:sdDatePublished 2019-04-10T22:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N5e604aefa71d453c8cb401171a2579d0
35 schema:url http://link.springer.com/10.1134/1.567691
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N06ede380a7db47cba1f458699df55e76 schema:name doi
40 schema:value 10.1134/1.567691
41 rdf:type schema:PropertyValue
42 N2395cc4ca6624065877b9dbf505cdb2b schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
43 rdf:type schema:Organization
44 N3159e0d6b4e048098708e52d9c4f3e4d rdf:first sg:person.0616721157.24
45 rdf:rest Nd34ca72f1515475aab7ac8e332fda965
46 N372ecdcab8a641f6b9dafd4cb03ae06c schema:name readcube_id
47 schema:value fa34503f88274d9ae0fa3752c2b967fcb83eab6b12adaa5e5327f9c0af621459
48 rdf:type schema:PropertyValue
49 N5e604aefa71d453c8cb401171a2579d0 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N73c5fa39e8b6463ba4cffd9a75143c41 rdf:first sg:person.01032325103.52
52 rdf:rest N900565f33e7843d4bfc00b6124a28c61
53 N87dd29374316400ababe193cfddd4d5d schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
54 rdf:type schema:Organization
55 N900565f33e7843d4bfc00b6124a28c61 rdf:first sg:person.0716076503.65
56 rdf:rest N3159e0d6b4e048098708e52d9c4f3e4d
57 Nc2b4baa7447c4de6b7b3fa9e52212f63 schema:volumeNumber 67
58 rdf:type schema:PublicationVolume
59 Ncd675533ac9544d083c7f16ed453f712 schema:issueNumber 7
60 rdf:type schema:PublicationIssue
61 Nd34ca72f1515475aab7ac8e332fda965 rdf:first sg:person.016542473375.76
62 rdf:rest rdf:nil
63 Ne3e356fd9254496c93d081efbd050cab schema:name dimensions_id
64 schema:value pub.1052526948
65 rdf:type schema:PropertyValue
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1052174 schema:issn 0021-3640
73 1090-6487
74 schema:name JETP Letters
75 rdf:type schema:Periodical
76 sg:person.01032325103.52 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Petrashov
78 schema:givenName V. T.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032325103.52
80 rdf:type schema:Person
81 sg:person.016542473375.76 schema:affiliation N87dd29374316400ababe193cfddd4d5d
82 schema:familyName Claeson
83 schema:givenName T.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542473375.76
85 rdf:type schema:Person
86 sg:person.0616721157.24 schema:affiliation N2395cc4ca6624065877b9dbf505cdb2b
87 schema:familyName Delsing
88 schema:givenName P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616721157.24
90 rdf:type schema:Person
91 sg:person.0716076503.65 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Shaikhaidarov
93 schema:givenName R. Sh.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716076503.65
95 rdf:type schema:Person
96 sg:pub.10.1134/1.567256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025536358
97 https://doi.org/10.1134/1.567256
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.1145385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057673448
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0953-8984/8/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015355814
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.1.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060518330
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.53.9267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580826
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.56.11184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585372
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.73.2488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809831
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.74.5268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811342
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.74.602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811371
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.76.823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024334654
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.77.4950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027638178
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1116/1.580346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062190393
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
122 schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
123 Department of Physics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK
124 Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...