Phase-sensitive reentrance into the normal state of mesoscopic SNS structures View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-04

AUTHORS

V. T. Petrashov, R. Sh. Shaikhaidarov, P. Delsing, T. Claeson

ABSTRACT

Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference Δϕ between the NS boundaries approaches the values Δϕ =(2n+1)π, n=0,1,2,..., irrespective of temperature and applied voltage. For Δϕ =2nπ and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values Δϕ=2nπ, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the “weak” proximity effect approximation. More... »

PAGES

513-520

References to SciGraph publications

Journal

TITLE

JETP Letters

ISSUE

7

VOLUME

67

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.567691

DOI

http://dx.doi.org/10.1134/1.567691

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1052526948


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0912", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Materials Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Department of Physics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK", 
            "Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Petrashov", 
        "givenName": "V. T.", 
        "id": "sg:person.01032325103.52", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032325103.52"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia", 
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shaikhaidarov", 
        "givenName": "R. Sh.", 
        "id": "sg:person.0716076503.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716076503.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Delsing", 
        "givenName": "P.", 
        "id": "sg:person.0616721157.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616721157.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Claeson", 
        "givenName": "T.", 
        "id": "sg:person.016542473375.76", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542473375.76"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0953-8984/8/4/001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015355814"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.76.823", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024334654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025536358", 
          "https://doi.org/10.1134/1.567256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027638178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.77.4950", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027638178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1145385", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057673448"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.1.327", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060518330"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.9267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060580826"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.11184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.56.11184", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060585372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809831"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.5268", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.74.602", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060811371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.580346", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062190393"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-04", 
    "datePublishedReg": "1998-04-01", 
    "description": "Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference \u0394\u03d5 between the NS boundaries approaches the values \u0394\u03d5 =(2n+1)\u03c0, n=0,1,2,..., irrespective of temperature and applied voltage. For \u0394\u03d5 =2n\u03c0 and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values \u0394\u03d5=2n\u03c0, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the \u201cweak\u201d proximity effect approximation.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.567691", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "67"
      }
    ], 
    "name": "Phase-sensitive reentrance into the normal state of mesoscopic SNS structures", 
    "pagination": "513-520", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "fa34503f88274d9ae0fa3752c2b967fcb83eab6b12adaa5e5327f9c0af621459"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.567691"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1052526948"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.567691", 
      "https://app.dimensions.ai/details/publication/pub.1052526948"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.567691"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.567691'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.567691'


 

This table displays all metadata directly associated to this object as RDF triples.

125 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.567691 schema:about anzsrc-for:09
2 anzsrc-for:0912
3 schema:author N3b921eed207c4aa0a8b2dad78e0ea2ad
4 schema:citation sg:pub.10.1134/1.567256
5 https://doi.org/10.1063/1.1145385
6 https://doi.org/10.1088/0953-8984/8/4/001
7 https://doi.org/10.1103/physrevb.1.327
8 https://doi.org/10.1103/physrevb.53.9267
9 https://doi.org/10.1103/physrevb.56.11184
10 https://doi.org/10.1103/physrevlett.73.2488
11 https://doi.org/10.1103/physrevlett.74.5268
12 https://doi.org/10.1103/physrevlett.74.602
13 https://doi.org/10.1103/physrevlett.76.823
14 https://doi.org/10.1103/physrevlett.77.4950
15 https://doi.org/10.1116/1.580346
16 schema:datePublished 1998-04
17 schema:datePublishedReg 1998-04-01
18 schema:description Normal (N) metallic (Ag) mesoscopic conductors with two superconducting (S) faces (Al), arranged mirror-symmetrically relative to the streamlines of the current, periodically switch into the normal state as the superconducting phase difference Δϕ between the NS boundaries approaches the values Δϕ =(2n+1)π, n=0,1,2,..., irrespective of temperature and applied voltage. For Δϕ =2nπ and low applied voltages the conductance passes through a maximum and approaches the normal value as temperature decreases (reentrance). As the voltage subsequently increases, the conductance increases and passes through a maximum. As the phase difference moves away from the values Δϕ=2nπ, the maxima shift in the direction of low temperatures and voltages. The latter result shows unequivocally that in our metal structures it is necessary to take into account the next-order corrections to the “weak” proximity effect approximation.
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N24d78f55d5df44239458ea2aff1bb73a
23 N3f60ba2b556d41f58f1edadc8961e2bb
24 sg:journal.1052174
25 schema:name Phase-sensitive reentrance into the normal state of mesoscopic SNS structures
26 schema:pagination 513-520
27 schema:productId N7f3100a537c6463cb1e5374baf4d3056
28 N9827a7d12fbc429b86dbe0e3990cb866
29 Ndc5ccb064ce1430c9986c90dd079d2db
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052526948
31 https://doi.org/10.1134/1.567691
32 schema:sdDatePublished 2019-04-10T22:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N0d0a43ef13564ca395c01bd3fd41cd05
35 schema:url http://link.springer.com/10.1134/1.567691
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N02cbad1cae6f4ecdb98bc9435a74fa4d rdf:first sg:person.0616721157.24
40 rdf:rest Ncd5a25b3e3344d00abd7ff881dc9a610
41 N0d0a43ef13564ca395c01bd3fd41cd05 schema:name Springer Nature - SN SciGraph project
42 rdf:type schema:Organization
43 N24090109858b4ba09f49ef35d48e2a53 schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
44 rdf:type schema:Organization
45 N24d78f55d5df44239458ea2aff1bb73a schema:volumeNumber 67
46 rdf:type schema:PublicationVolume
47 N3b921eed207c4aa0a8b2dad78e0ea2ad rdf:first sg:person.01032325103.52
48 rdf:rest N9a11b7f290f54b649a4f20b42857e654
49 N3f60ba2b556d41f58f1edadc8961e2bb schema:issueNumber 7
50 rdf:type schema:PublicationIssue
51 N7f3100a537c6463cb1e5374baf4d3056 schema:name dimensions_id
52 schema:value pub.1052526948
53 rdf:type schema:PropertyValue
54 N9827a7d12fbc429b86dbe0e3990cb866 schema:name readcube_id
55 schema:value fa34503f88274d9ae0fa3752c2b967fcb83eab6b12adaa5e5327f9c0af621459
56 rdf:type schema:PropertyValue
57 N9a11b7f290f54b649a4f20b42857e654 rdf:first sg:person.0716076503.65
58 rdf:rest N02cbad1cae6f4ecdb98bc9435a74fa4d
59 Ncd5a25b3e3344d00abd7ff881dc9a610 rdf:first sg:person.016542473375.76
60 rdf:rest rdf:nil
61 Ndc5ccb064ce1430c9986c90dd079d2db schema:name doi
62 schema:value 10.1134/1.567691
63 rdf:type schema:PropertyValue
64 Ned3ffeff5a4d418c873042da97fb82cb schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
65 rdf:type schema:Organization
66 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
67 schema:name Engineering
68 rdf:type schema:DefinedTerm
69 anzsrc-for:0912 schema:inDefinedTermSet anzsrc-for:
70 schema:name Materials Engineering
71 rdf:type schema:DefinedTerm
72 sg:journal.1052174 schema:issn 0021-3640
73 1090-6487
74 schema:name JETP Letters
75 rdf:type schema:Periodical
76 sg:person.01032325103.52 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
77 schema:familyName Petrashov
78 schema:givenName V. T.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01032325103.52
80 rdf:type schema:Person
81 sg:person.016542473375.76 schema:affiliation N24090109858b4ba09f49ef35d48e2a53
82 schema:familyName Claeson
83 schema:givenName T.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016542473375.76
85 rdf:type schema:Person
86 sg:person.0616721157.24 schema:affiliation Ned3ffeff5a4d418c873042da97fb82cb
87 schema:familyName Delsing
88 schema:givenName P.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616721157.24
90 rdf:type schema:Person
91 sg:person.0716076503.65 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
92 schema:familyName Shaikhaidarov
93 schema:givenName R. Sh.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0716076503.65
95 rdf:type schema:Person
96 sg:pub.10.1134/1.567256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025536358
97 https://doi.org/10.1134/1.567256
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1063/1.1145385 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057673448
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1088/0953-8984/8/4/001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015355814
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevb.1.327 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060518330
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1103/physrevb.53.9267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060580826
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1103/physrevb.56.11184 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060585372
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1103/physrevlett.73.2488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809831
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1103/physrevlett.74.5268 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811342
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1103/physrevlett.74.602 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060811371
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1103/physrevlett.76.823 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024334654
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1103/physrevlett.77.4950 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027638178
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1116/1.580346 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062190393
120 rdf:type schema:CreativeWork
121 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
122 schema:name Department of Physics, Chalmers University of Technology and University of Gothenburg, S-412 96, Gothenburg, Sweden
123 Department of Physics, Royal Holloway, University of London, TW20 0EX, Egham, Surrey, UK
124 Institute of Problems in the Technology of Microelectronics and Ultrapure Materials, Russian Academy of Sciences, 142432, Chernogolovka, Moscow Region, Russia
125 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...