Parity effect and charge-binding transition in submicron Josephson junction arrays View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

1997-04

AUTHORS

M. V. Feigel’man, S. E. Korshunov, A. B. Pugachev

ABSTRACT

We reconsider the Berezinski-Kosterlitz-Thouless (BKT) transition to an insulating state in Coulomb-dominated Josephson junction arrays. We show that the previously predicted picture of the Cooper-pair BKT transition at T=T2 is valid only under the condition that T2 is considerably below the parity-effect temperature T*≈0.1Δ, and that even in that case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T1=T2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of the unusual reentrant temperature dependence of the resistivity in an array with a nearly critical ratio EC/EJ. More... »

PAGES

566-571

Journal

TITLE

JETP Letters

ISSUE

7

VOLUME

65

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.567397

DOI

http://dx.doi.org/10.1134/1.567397

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1011408455


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Feigel\u2019man", 
        "givenName": "M. V.", 
        "id": "sg:person.0771620124.18", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771620124.18"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Korshunov", 
        "givenName": "S. E.", 
        "id": "sg:person.013670465614.72", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670465614.72"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Pugachev", 
        "givenName": "A. B.", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021530760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.1154", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021530760"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3719/7/6/005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058967469"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.7619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.37.7619", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060546071"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.5307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.5307", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060557709"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.47.1145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060564887"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.3959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.10081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.54.10081", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581141"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1997", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805380"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805666"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.4138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807174"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.70.4138", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060807174"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1997-04", 
    "datePublishedReg": "1997-04-01", 
    "description": "We reconsider the Berezinski-Kosterlitz-Thouless (BKT) transition to an insulating state in Coulomb-dominated Josephson junction arrays. We show that the previously predicted picture of the Cooper-pair BKT transition at T=T2 is valid only under the condition that T2 is considerably below the parity-effect temperature T*\u22480.1\u0394, and that even in that case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T1=T2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of the unusual reentrant temperature dependence of the resistivity in an array with a nearly critical ratio EC/EJ.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.567397", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "65"
      }
    ], 
    "name": "Parity effect and charge-binding transition in submicron Josephson junction arrays", 
    "pagination": "566-571", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "365aa209c34251ea3bac551116e1abe95647b6478986866edf553c06ea8cd9f1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.567397"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1011408455"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.567397", 
      "https://app.dimensions.ai/details/publication/pub.1011408455"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T20:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.567397"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.567397'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.567397'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.567397'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.567397'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      21 PREDICATES      37 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.567397 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N9c86601c530e42f4af578336bc1dc5f3
4 schema:citation https://doi.org/10.1088/0022-3719/7/6/005
5 https://doi.org/10.1103/physrevb.37.7619
6 https://doi.org/10.1103/physrevb.43.5307
7 https://doi.org/10.1103/physrevb.47.1145
8 https://doi.org/10.1103/physrevb.50.3959
9 https://doi.org/10.1103/physrevb.54.10081
10 https://doi.org/10.1103/physrevlett.69.1997
11 https://doi.org/10.1103/physrevlett.69.2971
12 https://doi.org/10.1103/physrevlett.70.4138
13 https://doi.org/10.1103/physrevlett.75.1154
14 schema:datePublished 1997-04
15 schema:datePublishedReg 1997-04-01
16 schema:description We reconsider the Berezinski-Kosterlitz-Thouless (BKT) transition to an insulating state in Coulomb-dominated Josephson junction arrays. We show that the previously predicted picture of the Cooper-pair BKT transition at T=T2 is valid only under the condition that T2 is considerably below the parity-effect temperature T*≈0.1Δ, and that even in that case it is not a rigorous phase transition but only a crossover, whereas the real phase transition takes place at T1=T2/4. Our theory is in agreement with available experimental data on Coulomb-dominated Josephson arrays and also sheds some light on the origin of the unusual reentrant temperature dependence of the resistivity in an array with a nearly critical ratio EC/EJ.
17 schema:genre research_article
18 schema:inLanguage en
19 schema:isAccessibleForFree true
20 schema:isPartOf N91263715b7b44130be98dedc4f8d8932
21 Nf92780ca21bb45d39cbd35cabefa646b
22 sg:journal.1052174
23 schema:name Parity effect and charge-binding transition in submicron Josephson junction arrays
24 schema:pagination 566-571
25 schema:productId N12ae665980f24373bfb3f23043fb4f86
26 N341b2288ecfa4ff593349757919b37fc
27 N5cf90666adb74ce595b1dd8e0264f8fb
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011408455
29 https://doi.org/10.1134/1.567397
30 schema:sdDatePublished 2019-04-10T20:44
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Na46552f0e7844861aa65a1be2d24ccca
33 schema:url http://link.springer.com/10.1134/1.567397
34 sgo:license sg:explorer/license/
35 sgo:sdDataset articles
36 rdf:type schema:ScholarlyArticle
37 N12ae665980f24373bfb3f23043fb4f86 schema:name dimensions_id
38 schema:value pub.1011408455
39 rdf:type schema:PropertyValue
40 N166700fc9f3e41b4b5ec6ccfacbfe482 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
41 schema:familyName Pugachev
42 schema:givenName A. B.
43 rdf:type schema:Person
44 N341b2288ecfa4ff593349757919b37fc schema:name readcube_id
45 schema:value 365aa209c34251ea3bac551116e1abe95647b6478986866edf553c06ea8cd9f1
46 rdf:type schema:PropertyValue
47 N5cf90666adb74ce595b1dd8e0264f8fb schema:name doi
48 schema:value 10.1134/1.567397
49 rdf:type schema:PropertyValue
50 N91263715b7b44130be98dedc4f8d8932 schema:issueNumber 7
51 rdf:type schema:PublicationIssue
52 N99858f5142a64326a0403aa1d1f76d78 rdf:first N166700fc9f3e41b4b5ec6ccfacbfe482
53 rdf:rest rdf:nil
54 N9c86601c530e42f4af578336bc1dc5f3 rdf:first sg:person.0771620124.18
55 rdf:rest Naa3066f70a3f4904b51a4a2ba7152e70
56 Na46552f0e7844861aa65a1be2d24ccca schema:name Springer Nature - SN SciGraph project
57 rdf:type schema:Organization
58 Naa3066f70a3f4904b51a4a2ba7152e70 rdf:first sg:person.013670465614.72
59 rdf:rest N99858f5142a64326a0403aa1d1f76d78
60 Nf92780ca21bb45d39cbd35cabefa646b schema:volumeNumber 65
61 rdf:type schema:PublicationVolume
62 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
63 schema:name Engineering
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
66 schema:name Electrical and Electronic Engineering
67 rdf:type schema:DefinedTerm
68 sg:journal.1052174 schema:issn 0021-3640
69 1090-6487
70 schema:name JETP Letters
71 rdf:type schema:Periodical
72 sg:person.013670465614.72 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
73 schema:familyName Korshunov
74 schema:givenName S. E.
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013670465614.72
76 rdf:type schema:Person
77 sg:person.0771620124.18 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
78 schema:familyName Feigel’man
79 schema:givenName M. V.
80 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0771620124.18
81 rdf:type schema:Person
82 https://doi.org/10.1088/0022-3719/7/6/005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058967469
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physrevb.37.7619 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060546071
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physrevb.43.5307 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060557709
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physrevb.47.1145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060564887
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevb.50.3959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573809
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevb.54.10081 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581141
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.69.1997 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805380
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.69.2971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805666
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.70.4138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060807174
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.75.1154 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021530760
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
103 schema:name L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences, 117940, Moscow, Russia
104 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...