Excess 1/f noise in systems with an exponentially wide spectrum of resistances and dual universality of the percolation-like noise exponent View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1996-04

AUTHORS

A. A. Snarskii, A. Kolek

ABSTRACT

The excess 1/f noise in a random lattice with bond resistances r∼exp(−λx), where x is a random variable and λ≪1, is studied theoretically. It is shown that if the correlation function {δr2}∼rrθ+2, then the relative spectral density of the noise in the system is expressed as Ce∼λm exp(−λ(1−pc)), where pc is the percolation threshold and m=νd (ν is the critical exponent of the correlation length and d is the dimensionality of the problem). It is hypothesized that the exponent m possesses a dual universality: It is independent of 1) the geometry of the lattice and 2) the θ-mechanism responsible for the generation of the local noise. Numerical modeling in a three-dimensional lattice gives m=52.3 for θ=1 and θ=0, in agreement with the hypothesis. More... »

PAGES

651-656

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.567082

DOI

http://dx.doi.org/10.1134/1.567082

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006378802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0105", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ukrainian National Technical University\u2014\u201cKPI,\u201d, 252056, Kiev, Ukraine", 
          "id": "http://www.grid.ac/institutes/grid.440544.5", 
          "name": [
            "Ukrainian National Technical University\u2014\u201cKPI,\u201d, 252056, Kiev, Ukraine"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Snarskii", 
        "givenName": "A. A.", 
        "id": "sg:person.01276447353.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276447353.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Politechnika Rzeszowska, 35-959, Rzeszow, Poland", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "Politechnika Rzeszowska, 35-959, Rzeszow, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kolek", 
        "givenName": "A.", 
        "id": "sg:person.014237145141.82", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237145141.82"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-02403-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047888670", 
          "https://doi.org/10.1007/978-3-662-02403-4"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1996-04", 
    "datePublishedReg": "1996-04-01", 
    "description": "The excess 1/f noise in a random lattice with bond resistances r\u223cexp(\u2212\u03bbx), where x is a random variable and \u03bb\u226a1, is studied theoretically. It is shown that if the correlation function {\u03b4r2}\u223crr\u03b8+2, then the relative spectral density of the noise in the system is expressed as Ce\u223c\u03bbm exp(\u2212\u03bb(1\u2212pc)), where pc is the percolation threshold and m=\u03bdd (\u03bd is the critical exponent of the correlation length and d is the dimensionality of the problem). It is hypothesized that the exponent m possesses a dual universality: It is independent of 1) the geometry of the lattice and 2) the \u03b8-mechanism responsible for the generation of the local noise. Numerical modeling in a three-dimensional lattice gives m=52.3 for \u03b8=1 and \u03b8=0, in agreement with the hypothesis.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.567082", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "8", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "63"
      }
    ], 
    "keywords": [
      "random lattices", 
      "random variables", 
      "correlation functions", 
      "three-dimensional lattice", 
      "noise", 
      "lattice", 
      "spectral density", 
      "exponent", 
      "local noise", 
      "numerical modeling", 
      "variables", 
      "function", 
      "system", 
      "universality", 
      "geometry", 
      "modeling", 
      "noise exponent", 
      "resistance", 
      "percolation threshold", 
      "threshold", 
      "generation", 
      "agreement", 
      "wide spectrum", 
      "relative spectral density", 
      "density", 
      "PC", 
      "\u03bdd", 
      "mechanism", 
      "hypothesis", 
      "spectra", 
      "bond resistance", 
      "dual universality", 
      "Excess 1/f noise", 
      "f noise", 
      "percolation-like noise exponent"
    ], 
    "name": "Excess 1/f noise in systems with an exponentially wide spectrum of resistances and dual universality of the percolation-like noise exponent", 
    "pagination": "651-656", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006378802"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.567082"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.567082", 
      "https://app.dimensions.ai/details/publication/pub.1006378802"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:01", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_276.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.567082"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.567082'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.567082'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.567082'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.567082'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      22 PREDICATES      62 URIs      53 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.567082 schema:about anzsrc-for:01
2 anzsrc-for:0105
3 schema:author N94cc68389a2e403a9521edfe530c999d
4 schema:citation sg:pub.10.1007/978-3-662-02403-4
5 schema:datePublished 1996-04
6 schema:datePublishedReg 1996-04-01
7 schema:description The excess 1/f noise in a random lattice with bond resistances r∼exp(−λx), where x is a random variable and λ≪1, is studied theoretically. It is shown that if the correlation function {δr2}∼rrθ+2, then the relative spectral density of the noise in the system is expressed as Ce∼λm exp(−λ(1−pc)), where pc is the percolation threshold and m=νd (ν is the critical exponent of the correlation length and d is the dimensionality of the problem). It is hypothesized that the exponent m possesses a dual universality: It is independent of 1) the geometry of the lattice and 2) the θ-mechanism responsible for the generation of the local noise. Numerical modeling in a three-dimensional lattice gives m=52.3 for θ=1 and θ=0, in agreement with the hypothesis.
8 schema:genre article
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N2b704ac47c7e4f3cbcfa5ea542882c54
12 Ne8221830656f42feb45f795205f5cc08
13 sg:journal.1052174
14 schema:keywords Excess 1/f noise
15 PC
16 agreement
17 bond resistance
18 correlation functions
19 density
20 dual universality
21 exponent
22 f noise
23 function
24 generation
25 geometry
26 hypothesis
27 lattice
28 local noise
29 mechanism
30 modeling
31 noise
32 noise exponent
33 numerical modeling
34 percolation threshold
35 percolation-like noise exponent
36 random lattices
37 random variables
38 relative spectral density
39 resistance
40 spectra
41 spectral density
42 system
43 three-dimensional lattice
44 threshold
45 universality
46 variables
47 wide spectrum
48 νd
49 schema:name Excess 1/f noise in systems with an exponentially wide spectrum of resistances and dual universality of the percolation-like noise exponent
50 schema:pagination 651-656
51 schema:productId N1d3ddb3363ea4f0ea3924a1805ba235b
52 N772d84b8d15d4637888849db6ea9cf3f
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006378802
54 https://doi.org/10.1134/1.567082
55 schema:sdDatePublished 2021-11-01T18:01
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N65afd53acbfd4ca7a6c6f73e32061533
58 schema:url https://doi.org/10.1134/1.567082
59 sgo:license sg:explorer/license/
60 sgo:sdDataset articles
61 rdf:type schema:ScholarlyArticle
62 N1d3ddb3363ea4f0ea3924a1805ba235b schema:name doi
63 schema:value 10.1134/1.567082
64 rdf:type schema:PropertyValue
65 N2b704ac47c7e4f3cbcfa5ea542882c54 schema:volumeNumber 63
66 rdf:type schema:PublicationVolume
67 N65afd53acbfd4ca7a6c6f73e32061533 schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 N772d84b8d15d4637888849db6ea9cf3f schema:name dimensions_id
70 schema:value pub.1006378802
71 rdf:type schema:PropertyValue
72 N94cc68389a2e403a9521edfe530c999d rdf:first sg:person.01276447353.40
73 rdf:rest Nc91d567d13c94681a008bd71de756d77
74 Nc91d567d13c94681a008bd71de756d77 rdf:first sg:person.014237145141.82
75 rdf:rest rdf:nil
76 Ne8221830656f42feb45f795205f5cc08 schema:issueNumber 8
77 rdf:type schema:PublicationIssue
78 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
79 schema:name Mathematical Sciences
80 rdf:type schema:DefinedTerm
81 anzsrc-for:0105 schema:inDefinedTermSet anzsrc-for:
82 schema:name Mathematical Physics
83 rdf:type schema:DefinedTerm
84 sg:journal.1052174 schema:issn 0021-3640
85 1090-6487
86 schema:name JETP Letters
87 schema:publisher Pleiades Publishing
88 rdf:type schema:Periodical
89 sg:person.01276447353.40 schema:affiliation grid-institutes:grid.440544.5
90 schema:familyName Snarskii
91 schema:givenName A. A.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01276447353.40
93 rdf:type schema:Person
94 sg:person.014237145141.82 schema:affiliation grid-institutes:None
95 schema:familyName Kolek
96 schema:givenName A.
97 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014237145141.82
98 rdf:type schema:Person
99 sg:pub.10.1007/978-3-662-02403-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047888670
100 https://doi.org/10.1007/978-3-662-02403-4
101 rdf:type schema:CreativeWork
102 grid-institutes:None schema:alternateName Politechnika Rzeszowska, 35-959, Rzeszow, Poland
103 schema:name Politechnika Rzeszowska, 35-959, Rzeszow, Poland
104 rdf:type schema:Organization
105 grid-institutes:grid.440544.5 schema:alternateName Ukrainian National Technical University—“KPI,”, 252056, Kiev, Ukraine
106 schema:name Ukrainian National Technical University—“KPI,”, 252056, Kiev, Ukraine
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...