Statistical thermodynamics of the formation of an infinite cluster of thermally reversible chemical bonds View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1999-03

AUTHORS

I. Ya. Erukhimovich, A. V. Ermoshkin

ABSTRACT

A systematic “mean-field” treatment of the thermodynamic equilibrium formation of an infinite cluster of bonds in a system of identical monomers capable of forming from n=0 to n>2 reversible chemical bonds with one another is proposed within the Cayley-tree approximation. For this purpose the difference between the symmetry of the monomers appearing in “point-to-point” and closed bond paths, respectively, is taken into account on the basis of an analysis of the structure of the infinite cluster. Minimization with respect to the distribution of such monomers yields a nontrivial solution corresponding to a lower free energy than the classical solution, which does not allow for the symmetry difference indicated. In addition, it is shown that the classical solution corresponds to the free-energy maximum when the infinite cluster is formed and that the formation of the infinite cluster is a first-order phase transition. The possible form of the phase diagrams of the systems considered is analyzed. More... »

PAGES

538-544

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.558826

DOI

http://dx.doi.org/10.1134/1.558826

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1045748763


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "M. V. Lomonosov Moscow State University, 117234, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Erukhimovich", 
        "givenName": "I. Ya.", 
        "id": "sg:person.0617467055.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617467055.46"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow State University", 
          "id": "https://www.grid.ac/institutes/grid.14476.30", 
          "name": [
            "M. V. Lomonosov Moscow State University, 117234, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ermoshkin", 
        "givenName": "A. V.", 
        "id": "sg:person.015013452774.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015013452774.67"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/9780470141212.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013602517"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma970616h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051350144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ma970616h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051350144"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/j100386a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055668567"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja01856a061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055819991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1723803", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057790677"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.440061", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058018090"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.446170", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058024190"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.42.518", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060783850"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.46.250", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1999-03", 
    "datePublishedReg": "1999-03-01", 
    "description": "A systematic \u201cmean-field\u201d treatment of the thermodynamic equilibrium formation of an infinite cluster of bonds in a system of identical monomers capable of forming from n=0 to n>2 reversible chemical bonds with one another is proposed within the Cayley-tree approximation. For this purpose the difference between the symmetry of the monomers appearing in \u201cpoint-to-point\u201d and closed bond paths, respectively, is taken into account on the basis of an analysis of the structure of the infinite cluster. Minimization with respect to the distribution of such monomers yields a nontrivial solution corresponding to a lower free energy than the classical solution, which does not allow for the symmetry difference indicated. In addition, it is shown that the classical solution corresponds to the free-energy maximum when the infinite cluster is formed and that the formation of the infinite cluster is a first-order phase transition. The possible form of the phase diagrams of the systems considered is analyzed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.558826", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "3", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "88"
      }
    ], 
    "name": "Statistical thermodynamics of the formation of an infinite cluster of thermally reversible chemical bonds", 
    "pagination": "538-544", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "d9eb96fd0e8f9e4cb3b176c95d8084b60fce6edaf8d46623dd59015123bb4d51"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.558826"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1045748763"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.558826", 
      "https://app.dimensions.ai/details/publication/pub.1045748763"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T23:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8693_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.558826"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.558826'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.558826'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.558826'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.558826'


 

This table displays all metadata directly associated to this object as RDF triples.

95 TRIPLES      21 PREDICATES      36 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.558826 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N727ae229b70f420d91cdbea7e0abd93c
4 schema:citation https://doi.org/10.1002/9780470141212.ch3
5 https://doi.org/10.1021/j100386a002
6 https://doi.org/10.1021/ja01856a061
7 https://doi.org/10.1021/ma970616h
8 https://doi.org/10.1063/1.1723803
9 https://doi.org/10.1063/1.440061
10 https://doi.org/10.1063/1.446170
11 https://doi.org/10.1103/physrevlett.42.518
12 https://doi.org/10.1103/physrevlett.46.250
13 schema:datePublished 1999-03
14 schema:datePublishedReg 1999-03-01
15 schema:description A systematic “mean-field” treatment of the thermodynamic equilibrium formation of an infinite cluster of bonds in a system of identical monomers capable of forming from n=0 to n>2 reversible chemical bonds with one another is proposed within the Cayley-tree approximation. For this purpose the difference between the symmetry of the monomers appearing in “point-to-point” and closed bond paths, respectively, is taken into account on the basis of an analysis of the structure of the infinite cluster. Minimization with respect to the distribution of such monomers yields a nontrivial solution corresponding to a lower free energy than the classical solution, which does not allow for the symmetry difference indicated. In addition, it is shown that the classical solution corresponds to the free-energy maximum when the infinite cluster is formed and that the formation of the infinite cluster is a first-order phase transition. The possible form of the phase diagrams of the systems considered is analyzed.
16 schema:genre research_article
17 schema:inLanguage en
18 schema:isAccessibleForFree false
19 schema:isPartOf N2a48e467171d48e2a58715c1e6876186
20 N572378f27ee040f79160b27e2bf25570
21 sg:journal.1295107
22 schema:name Statistical thermodynamics of the formation of an infinite cluster of thermally reversible chemical bonds
23 schema:pagination 538-544
24 schema:productId N370b8e4f3d2242a6996e774ba24c8809
25 Nd4017d4f409e489888bbacabe61fd035
26 Ne028beb6172e4a5f8ccb1883cf775af8
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045748763
28 https://doi.org/10.1134/1.558826
29 schema:sdDatePublished 2019-04-10T23:22
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N25d17fa348ef42d1aff106c2ce27304c
32 schema:url http://link.springer.com/10.1134/1.558826
33 sgo:license sg:explorer/license/
34 sgo:sdDataset articles
35 rdf:type schema:ScholarlyArticle
36 N25d17fa348ef42d1aff106c2ce27304c schema:name Springer Nature - SN SciGraph project
37 rdf:type schema:Organization
38 N2a48e467171d48e2a58715c1e6876186 schema:volumeNumber 88
39 rdf:type schema:PublicationVolume
40 N370b8e4f3d2242a6996e774ba24c8809 schema:name dimensions_id
41 schema:value pub.1045748763
42 rdf:type schema:PropertyValue
43 N516b20a5cf324ea88fb66c61a1e00da5 rdf:first sg:person.015013452774.67
44 rdf:rest rdf:nil
45 N572378f27ee040f79160b27e2bf25570 schema:issueNumber 3
46 rdf:type schema:PublicationIssue
47 N727ae229b70f420d91cdbea7e0abd93c rdf:first sg:person.0617467055.46
48 rdf:rest N516b20a5cf324ea88fb66c61a1e00da5
49 Nd4017d4f409e489888bbacabe61fd035 schema:name doi
50 schema:value 10.1134/1.558826
51 rdf:type schema:PropertyValue
52 Ne028beb6172e4a5f8ccb1883cf775af8 schema:name readcube_id
53 schema:value d9eb96fd0e8f9e4cb3b176c95d8084b60fce6edaf8d46623dd59015123bb4d51
54 rdf:type schema:PropertyValue
55 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
56 schema:name Chemical Sciences
57 rdf:type schema:DefinedTerm
58 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
59 schema:name Physical Chemistry (incl. Structural)
60 rdf:type schema:DefinedTerm
61 sg:journal.1295107 schema:issn 1063-7761
62 1090-6509
63 schema:name Journal of Experimental and Theoretical Physics
64 rdf:type schema:Periodical
65 sg:person.015013452774.67 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
66 schema:familyName Ermoshkin
67 schema:givenName A. V.
68 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015013452774.67
69 rdf:type schema:Person
70 sg:person.0617467055.46 schema:affiliation https://www.grid.ac/institutes/grid.14476.30
71 schema:familyName Erukhimovich
72 schema:givenName I. Ya.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0617467055.46
74 rdf:type schema:Person
75 https://doi.org/10.1002/9780470141212.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013602517
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1021/j100386a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055668567
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1021/ja01856a061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055819991
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1021/ma970616h schema:sameAs https://app.dimensions.ai/details/publication/pub.1051350144
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1063/1.1723803 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057790677
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1063/1.440061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058018090
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1063/1.446170 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058024190
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1103/physrevlett.42.518 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060783850
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1103/physrevlett.46.250 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786115
92 rdf:type schema:CreativeWork
93 https://www.grid.ac/institutes/grid.14476.30 schema:alternateName Moscow State University
94 schema:name M. V. Lomonosov Moscow State University, 117234, Moscow, Russia
95 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...