Ionization of atoms in electric and magnetic fields and the imaginary time method View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-05

AUTHORS

V. S. Popov, B. M. Karnakov, V. D. Mur

ABSTRACT

A semiclassical theory is developed for the ionization of atoms and negative ions in constant, uniform electric and magnetic fields, including the Coulomb interaction between the electron and the atomic core during tunneling. The case of crossed fields (Lorentz ionization) is examined specially, as well as the limit of a strong magnetic field. Analytic equations are derived for arbitrary fields ℰ and ℋ that are weak compared to the characteristic intraatomic fields. The major results of this paper are obtained using the “imaginary time” method (ITM), in which tunneling is described using the classical equations of motion but with purely imaginary “time.” The possibility of generalizing the ITM to the relativistic case, as well as to states with nonzero angular momentum, is pointed out. More... »

PAGES

860-874

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.558557

DOI

http://dx.doi.org/10.1134/1.558557

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035277039


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Theoretical and Experimental Physics", 
          "id": "https://www.grid.ac/institutes/grid.21626.31", 
          "name": [
            "Institute of Theoretical and Experimental Physics, 117259, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Popov", 
        "givenName": "V. S.", 
        "id": "sg:person.015130307165.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130307165.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Engineering Physics Institute (Technical University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Karnakov", 
        "givenName": "B. M.", 
        "id": "sg:person.015037212212.92", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037212212.92"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Moscow Engineering Physics Institute", 
          "id": "https://www.grid.ac/institutes/grid.183446.c", 
          "name": [
            "Moscow Engineering Physics Institute (Technical University), 115409, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mur", 
        "givenName": "V. D.", 
        "id": "sg:person.011162740611.61", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162740611.61"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90376-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010468222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(87)90376-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010468222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567342", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013871737", 
          "https://doi.org/10.1134/1.567342"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1013964739", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-5451-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013964739", 
          "https://doi.org/10.1007/978-1-4684-5451-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4684-5451-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013964739", 
          "https://doi.org/10.1007/978-1-4684-5451-2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567459", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031973396", 
          "https://doi.org/10.1134/1.567459"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90088-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(93)90088-h", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038397817"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-4075/27/13/013", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1045227033"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.567041", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048338015", 
          "https://doi.org/10.1134/1.567041"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90447-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049097985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0375-9601(79)90447-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1049097985"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0375-9601(97)00140-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052666132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0022-3700/9/18/006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058955744"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.188.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060443345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrev.188.130", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060443345"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.16.877", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060466822"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.18.1853", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060467222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.28.3651", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060471590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.32.1338", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473654"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.4528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.48.4528", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060487990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.52.4508", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060490940"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.54.1206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060491708"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.51.2280", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789360"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.3367/ufnr.0153.198711b.0379", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1071218046"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-05", 
    "datePublishedReg": "1998-05-01", 
    "description": "A semiclassical theory is developed for the ionization of atoms and negative ions in constant, uniform electric and magnetic fields, including the Coulomb interaction between the electron and the atomic core during tunneling. The case of crossed fields (Lorentz ionization) is examined specially, as well as the limit of a strong magnetic field. Analytic equations are derived for arbitrary fields \u2130 and \u210b that are weak compared to the characteristic intraatomic fields. The major results of this paper are obtained using the \u201cimaginary time\u201d method (ITM), in which tunneling is described using the classical equations of motion but with purely imaginary \u201ctime.\u201d The possibility of generalizing the ITM to the relativistic case, as well as to states with nonzero angular momentum, is pointed out.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.558557", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "5", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "86"
      }
    ], 
    "name": "Ionization of atoms in electric and magnetic fields and the imaginary time method", 
    "pagination": "860-874", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a80b0af66250e70fc82028c9ef78856f44207237077ef2da6ae828f70dbd5130"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.558557"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035277039"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.558557", 
      "https://app.dimensions.ai/details/publication/pub.1035277039"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000500.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.558557"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.558557'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.558557'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.558557'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.558557'


 

This table displays all metadata directly associated to this object as RDF triples.

144 TRIPLES      21 PREDICATES      48 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.558557 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N2523380ae60f41718dd261833d15a46b
4 schema:citation sg:pub.10.1007/978-1-4684-5451-2
5 sg:pub.10.1134/1.567041
6 sg:pub.10.1134/1.567342
7 sg:pub.10.1134/1.567459
8 https://app.dimensions.ai/details/publication/pub.1013964739
9 https://doi.org/10.1016/0375-9601(79)90447-x
10 https://doi.org/10.1016/0375-9601(87)90376-8
11 https://doi.org/10.1016/0375-9601(93)90088-h
12 https://doi.org/10.1016/s0375-9601(97)00140-0
13 https://doi.org/10.1088/0022-3700/9/18/006
14 https://doi.org/10.1088/0953-4075/27/13/013
15 https://doi.org/10.1103/physrev.188.130
16 https://doi.org/10.1103/physreva.16.877
17 https://doi.org/10.1103/physreva.18.1853
18 https://doi.org/10.1103/physreva.28.3651
19 https://doi.org/10.1103/physreva.32.1338
20 https://doi.org/10.1103/physreva.48.4528
21 https://doi.org/10.1103/physreva.52.4508
22 https://doi.org/10.1103/physreva.54.1206
23 https://doi.org/10.1103/physrevlett.51.2280
24 https://doi.org/10.3367/ufnr.0153.198711b.0379
25 schema:datePublished 1998-05
26 schema:datePublishedReg 1998-05-01
27 schema:description A semiclassical theory is developed for the ionization of atoms and negative ions in constant, uniform electric and magnetic fields, including the Coulomb interaction between the electron and the atomic core during tunneling. The case of crossed fields (Lorentz ionization) is examined specially, as well as the limit of a strong magnetic field. Analytic equations are derived for arbitrary fields ℰ and ℋ that are weak compared to the characteristic intraatomic fields. The major results of this paper are obtained using the “imaginary time” method (ITM), in which tunneling is described using the classical equations of motion but with purely imaginary “time.” The possibility of generalizing the ITM to the relativistic case, as well as to states with nonzero angular momentum, is pointed out.
28 schema:genre research_article
29 schema:inLanguage en
30 schema:isAccessibleForFree false
31 schema:isPartOf N57eeb611a476413287a5c74b81ce9339
32 Nb21bcfbda0c14639a180f1cb231ebcb8
33 sg:journal.1295107
34 schema:name Ionization of atoms in electric and magnetic fields and the imaginary time method
35 schema:pagination 860-874
36 schema:productId N21bca759aa8a48169088152e38d069aa
37 N5ebc50f005074e40bd35678b73b053dc
38 Ncc4af8417d78447993a6a549409f8235
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035277039
40 https://doi.org/10.1134/1.558557
41 schema:sdDatePublished 2019-04-10T22:29
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher Nf301799dee08454cb08da1be01df8d0d
44 schema:url http://link.springer.com/10.1134/1.558557
45 sgo:license sg:explorer/license/
46 sgo:sdDataset articles
47 rdf:type schema:ScholarlyArticle
48 N0662c42eec274429a53b2fd27f94a35a rdf:first sg:person.011162740611.61
49 rdf:rest rdf:nil
50 N21bca759aa8a48169088152e38d069aa schema:name readcube_id
51 schema:value a80b0af66250e70fc82028c9ef78856f44207237077ef2da6ae828f70dbd5130
52 rdf:type schema:PropertyValue
53 N2523380ae60f41718dd261833d15a46b rdf:first sg:person.015130307165.06
54 rdf:rest N6787f7e96f8b48daa50869c47e66a484
55 N57eeb611a476413287a5c74b81ce9339 schema:volumeNumber 86
56 rdf:type schema:PublicationVolume
57 N5ebc50f005074e40bd35678b73b053dc schema:name doi
58 schema:value 10.1134/1.558557
59 rdf:type schema:PropertyValue
60 N6787f7e96f8b48daa50869c47e66a484 rdf:first sg:person.015037212212.92
61 rdf:rest N0662c42eec274429a53b2fd27f94a35a
62 Nb21bcfbda0c14639a180f1cb231ebcb8 schema:issueNumber 5
63 rdf:type schema:PublicationIssue
64 Ncc4af8417d78447993a6a549409f8235 schema:name dimensions_id
65 schema:value pub.1035277039
66 rdf:type schema:PropertyValue
67 Nf301799dee08454cb08da1be01df8d0d schema:name Springer Nature - SN SciGraph project
68 rdf:type schema:Organization
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
74 rdf:type schema:DefinedTerm
75 sg:journal.1295107 schema:issn 1063-7761
76 1090-6509
77 schema:name Journal of Experimental and Theoretical Physics
78 rdf:type schema:Periodical
79 sg:person.011162740611.61 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
80 schema:familyName Mur
81 schema:givenName V. D.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011162740611.61
83 rdf:type schema:Person
84 sg:person.015037212212.92 schema:affiliation https://www.grid.ac/institutes/grid.183446.c
85 schema:familyName Karnakov
86 schema:givenName B. M.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015037212212.92
88 rdf:type schema:Person
89 sg:person.015130307165.06 schema:affiliation https://www.grid.ac/institutes/grid.21626.31
90 schema:familyName Popov
91 schema:givenName V. S.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015130307165.06
93 rdf:type schema:Person
94 sg:pub.10.1007/978-1-4684-5451-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013964739
95 https://doi.org/10.1007/978-1-4684-5451-2
96 rdf:type schema:CreativeWork
97 sg:pub.10.1134/1.567041 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048338015
98 https://doi.org/10.1134/1.567041
99 rdf:type schema:CreativeWork
100 sg:pub.10.1134/1.567342 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013871737
101 https://doi.org/10.1134/1.567342
102 rdf:type schema:CreativeWork
103 sg:pub.10.1134/1.567459 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031973396
104 https://doi.org/10.1134/1.567459
105 rdf:type schema:CreativeWork
106 https://app.dimensions.ai/details/publication/pub.1013964739 schema:CreativeWork
107 https://doi.org/10.1016/0375-9601(79)90447-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1049097985
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/0375-9601(87)90376-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010468222
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1016/0375-9601(93)90088-h schema:sameAs https://app.dimensions.ai/details/publication/pub.1038397817
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1016/s0375-9601(97)00140-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052666132
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1088/0022-3700/9/18/006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058955744
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1088/0953-4075/27/13/013 schema:sameAs https://app.dimensions.ai/details/publication/pub.1045227033
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1103/physrev.188.130 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060443345
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreva.16.877 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060466822
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreva.18.1853 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060467222
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physreva.28.3651 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060471590
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreva.32.1338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473654
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreva.48.4528 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060487990
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreva.52.4508 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060490940
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physreva.54.1206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060491708
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.51.2280 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789360
136 rdf:type schema:CreativeWork
137 https://doi.org/10.3367/ufnr.0153.198711b.0379 schema:sameAs https://app.dimensions.ai/details/publication/pub.1071218046
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.183446.c schema:alternateName Moscow Engineering Physics Institute
140 schema:name Moscow Engineering Physics Institute (Technical University), 115409, Moscow, Russia
141 rdf:type schema:Organization
142 https://www.grid.ac/institutes/grid.21626.31 schema:alternateName Institute for Theoretical and Experimental Physics
143 schema:name Institute of Theoretical and Experimental Physics, 117259, Moscow, Russia
144 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...