Ontology type: schema:ScholarlyArticle
2005-12
AUTHORSP. G. Baranov, B. Ya. Ber, O. N. Godisov, I. V. Il’in, A. N. Ionov, E. N. Mokhov, M. V. Muzafarova, A. K. Kaliteevskii, M. A. Kaliteevskii, P. S. Kop’ev
ABSTRACTThe spatial distributions of the unpaired-electron wave functions of shallow N donors in SiC crystals and of shallow P and As donors in silicon crystals were determined by studying crystals with a modified content of the 29Si and 13C isotopes having a nonzero nuclear magnetic moment. As follows from the present EPR and available ENDOR data, the distribution of donor electrons in SiC depends substantially on the polytype and position in the lattice; indeed, in 4H-SiC, the unpaired electrons occupy primarily the Si s and p orbitals, whereas in 6H-SiC these electrons reside primarily in the s orbitals of C. The electron distributions for the N donor in the hexagonal position, which has a shallow level close to that obtained for this material in the effective-mass approximation, and for the donor occupying the quasi-cubic position differ substantially. The EPR spectrum of N in quasi-cubic positions was observed to have a hyperfine structure originating from a comparatively strong coupling with the first two coordination shells of Si and C, which were unambiguously identified. The effective-mass approximation breaks down close to the N donor occupying the quasi-cubic position, and the donor structure and the donor electron distribution become less symmetric. In silicon, reduction of the 29Si content brought about a substantial narrowing of the EPR line of the shallow P and As donors and an increase in the EPR signal intensity, as well as a noticeable increase in the spin-lattice relaxation time T1. This offers the possibility of selectively studying these spectra by optically exciting a region of the crystal in order to shorten T1 and thereby precluding EPR signal saturation only in the illuminated part of the material. This method may be used to advantage in developing materials for quantum computers based on donors in silicon and SiC. More... »
PAGES2219-2232
http://scigraph.springernature.com/pub.10.1134/1.2142882
DOIhttp://dx.doi.org/10.1134/1.2142882
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1034152860
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Classical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Baranov",
"givenName": "P. G.",
"id": "sg:person.0726165524.63",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Ber",
"givenName": "B. Ya.",
"id": "sg:person.013474671571.59",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Godisov",
"givenName": "O. N.",
"id": "sg:person.012015450711.18",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015450711.18"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Il\u2019in",
"givenName": "I. V.",
"id": "sg:person.014317537257.05",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317537257.05"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Ionov",
"givenName": "A. N.",
"id": "sg:person.012324031326.80",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324031326.80"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Mokhov",
"givenName": "E. N.",
"id": "sg:person.016652260422.42",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652260422.42"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Muzafarova",
"givenName": "M. V.",
"id": "sg:person.014155573051.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155573051.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kaliteevskii",
"givenName": "A. K.",
"id": "sg:person.010422507711.64",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422507711.64"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/None",
"name": [
"CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kaliteevskii",
"givenName": "M. A.",
"id": "sg:person.014454350336.50",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454350336.50"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Kop\u2019ev",
"givenName": "P. S.",
"id": "sg:person.015440263604.97",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440263604.97"
],
"type": "Person"
}
],
"citation": [
{
"id": "sg:pub.10.1007/978-1-4684-0904-8_4",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1016816187",
"https://doi.org/10.1007/978-1-4684-0904-8_4"
],
"type": "CreativeWork"
}
],
"datePublished": "2005-12",
"datePublishedReg": "2005-12-01",
"description": "The spatial distributions of the unpaired-electron wave functions of shallow N donors in SiC crystals and of shallow P and As donors in silicon crystals were determined by studying crystals with a modified content of the 29Si and 13C isotopes having a nonzero nuclear magnetic moment. As follows from the present EPR and available ENDOR data, the distribution of donor electrons in SiC depends substantially on the polytype and position in the lattice; indeed, in 4H-SiC, the unpaired electrons occupy primarily the Si s and p orbitals, whereas in 6H-SiC these electrons reside primarily in the s orbitals of C. The electron distributions for the N donor in the hexagonal position, which has a shallow level close to that obtained for this material in the effective-mass approximation, and for the donor occupying the quasi-cubic position differ substantially. The EPR spectrum of N in quasi-cubic positions was observed to have a hyperfine structure originating from a comparatively strong coupling with the first two coordination shells of Si and C, which were unambiguously identified. The effective-mass approximation breaks down close to the N donor occupying the quasi-cubic position, and the donor structure and the donor electron distribution become less symmetric. In silicon, reduction of the 29Si content brought about a substantial narrowing of the EPR line of the shallow P and As donors and an increase in the EPR signal intensity, as well as a noticeable increase in the spin-lattice relaxation time T1. This offers the possibility of selectively studying these spectra by optically exciting a region of the crystal in order to shorten T1 and thereby precluding EPR signal saturation only in the illuminated part of the material. This method may be used to advantage in developing materials for quantum computers based on donors in silicon and SiC.",
"genre": "article",
"id": "sg:pub.10.1134/1.2142882",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136591",
"issn": [
"0367-3294",
"1063-7834"
],
"name": "Physics of the Solid State",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "12",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "47"
}
],
"keywords": [
"effective mass approximation",
"wave functions",
"unpaired electron wave function",
"electron distribution",
"acceptor wave functions",
"quantum computer",
"spin-lattice relaxation time T1",
"magnetic moment",
"nuclear magnetic moments",
"donor electrons",
"relaxation time T1",
"hexagonal positions",
"silicon crystals",
"approximation",
"time T1",
"strong coupling",
"present EPR",
"Si s",
"EPR lines",
"electrons",
"shallow donors",
"hyperfine structure",
"silicon",
"substantial narrowing",
"illuminated part",
"signal saturation",
"distribution",
"lattice",
"orbitals",
"unpaired electron",
"spatial distribution",
"coordination shell",
"crystals",
"ENDOR data",
"EPR spectra",
"silicon carbide",
"EPR signal intensity",
"EPR studies",
"moment",
"function",
"SiC crystals",
"coupling",
"spectra",
"structure",
"position",
"donor structure",
"computer",
"polytypes",
"Si",
"order",
"saturation",
"shell",
"materials",
"EPR",
"SiC.",
"possibility",
"lines",
"SiC",
"intensity",
"data",
"region",
"part",
"T1",
"noticeable increase",
"shallow levels",
"carbide",
"reduction",
"increase",
"narrowing",
"isotopes",
"signal intensity",
"study",
"composition",
"levels",
"content",
"donors",
"isotopic composition",
"method"
],
"name": "Probing of the shallow donor and acceptor wave functions in silicon carbide and silicon through an EPR study of crystals with a modified isotopic composition",
"pagination": "2219-2232",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1034152860"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/1.2142882"
]
}
],
"sameAs": [
"https://doi.org/10.1134/1.2142882",
"https://app.dimensions.ai/details/publication/pub.1034152860"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-20T07:23",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_397.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/1.2142882"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.2142882'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.2142882'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.2142882'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.2142882'
This table displays all metadata directly associated to this object as RDF triples.
214 TRIPLES
22 PREDICATES
107 URIs
96 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/1.2142882 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0203 |
3 | ″ | ″ | anzsrc-for:0204 |
4 | ″ | ″ | anzsrc-for:0206 |
5 | ″ | schema:author | Nc2b9608c647b4713afcc05b6d57efc24 |
6 | ″ | schema:citation | sg:pub.10.1007/978-1-4684-0904-8_4 |
7 | ″ | schema:datePublished | 2005-12 |
8 | ″ | schema:datePublishedReg | 2005-12-01 |
9 | ″ | schema:description | The spatial distributions of the unpaired-electron wave functions of shallow N donors in SiC crystals and of shallow P and As donors in silicon crystals were determined by studying crystals with a modified content of the 29Si and 13C isotopes having a nonzero nuclear magnetic moment. As follows from the present EPR and available ENDOR data, the distribution of donor electrons in SiC depends substantially on the polytype and position in the lattice; indeed, in 4H-SiC, the unpaired electrons occupy primarily the Si s and p orbitals, whereas in 6H-SiC these electrons reside primarily in the s orbitals of C. The electron distributions for the N donor in the hexagonal position, which has a shallow level close to that obtained for this material in the effective-mass approximation, and for the donor occupying the quasi-cubic position differ substantially. The EPR spectrum of N in quasi-cubic positions was observed to have a hyperfine structure originating from a comparatively strong coupling with the first two coordination shells of Si and C, which were unambiguously identified. The effective-mass approximation breaks down close to the N donor occupying the quasi-cubic position, and the donor structure and the donor electron distribution become less symmetric. In silicon, reduction of the 29Si content brought about a substantial narrowing of the EPR line of the shallow P and As donors and an increase in the EPR signal intensity, as well as a noticeable increase in the spin-lattice relaxation time T1. This offers the possibility of selectively studying these spectra by optically exciting a region of the crystal in order to shorten T1 and thereby precluding EPR signal saturation only in the illuminated part of the material. This method may be used to advantage in developing materials for quantum computers based on donors in silicon and SiC. |
10 | ″ | schema:genre | article |
11 | ″ | schema:inLanguage | en |
12 | ″ | schema:isAccessibleForFree | false |
13 | ″ | schema:isPartOf | N66fb872657344982a5076705b7ec7c7b |
14 | ″ | ″ | Nfdf81611cb75490ba5b0a21d30960787 |
15 | ″ | ″ | sg:journal.1136591 |
16 | ″ | schema:keywords | ENDOR data |
17 | ″ | ″ | EPR |
18 | ″ | ″ | EPR lines |
19 | ″ | ″ | EPR signal intensity |
20 | ″ | ″ | EPR spectra |
21 | ″ | ″ | EPR studies |
22 | ″ | ″ | Si |
23 | ″ | ″ | Si s |
24 | ″ | ″ | SiC |
25 | ″ | ″ | SiC crystals |
26 | ″ | ″ | SiC. |
27 | ″ | ″ | T1 |
28 | ″ | ″ | acceptor wave functions |
29 | ″ | ″ | approximation |
30 | ″ | ″ | carbide |
31 | ″ | ″ | composition |
32 | ″ | ″ | computer |
33 | ″ | ″ | content |
34 | ″ | ″ | coordination shell |
35 | ″ | ″ | coupling |
36 | ″ | ″ | crystals |
37 | ″ | ″ | data |
38 | ″ | ″ | distribution |
39 | ″ | ″ | donor electrons |
40 | ″ | ″ | donor structure |
41 | ″ | ″ | donors |
42 | ″ | ″ | effective mass approximation |
43 | ″ | ″ | electron distribution |
44 | ″ | ″ | electrons |
45 | ″ | ″ | function |
46 | ″ | ″ | hexagonal positions |
47 | ″ | ″ | hyperfine structure |
48 | ″ | ″ | illuminated part |
49 | ″ | ″ | increase |
50 | ″ | ″ | intensity |
51 | ″ | ″ | isotopes |
52 | ″ | ″ | isotopic composition |
53 | ″ | ″ | lattice |
54 | ″ | ″ | levels |
55 | ″ | ″ | lines |
56 | ″ | ″ | magnetic moment |
57 | ″ | ″ | materials |
58 | ″ | ″ | method |
59 | ″ | ″ | moment |
60 | ″ | ″ | narrowing |
61 | ″ | ″ | noticeable increase |
62 | ″ | ″ | nuclear magnetic moments |
63 | ″ | ″ | orbitals |
64 | ″ | ″ | order |
65 | ″ | ″ | part |
66 | ″ | ″ | polytypes |
67 | ″ | ″ | position |
68 | ″ | ″ | possibility |
69 | ″ | ″ | present EPR |
70 | ″ | ″ | quantum computer |
71 | ″ | ″ | reduction |
72 | ″ | ″ | region |
73 | ″ | ″ | relaxation time T1 |
74 | ″ | ″ | saturation |
75 | ″ | ″ | shallow donors |
76 | ″ | ″ | shallow levels |
77 | ″ | ″ | shell |
78 | ″ | ″ | signal intensity |
79 | ″ | ″ | signal saturation |
80 | ″ | ″ | silicon |
81 | ″ | ″ | silicon carbide |
82 | ″ | ″ | silicon crystals |
83 | ″ | ″ | spatial distribution |
84 | ″ | ″ | spectra |
85 | ″ | ″ | spin-lattice relaxation time T1 |
86 | ″ | ″ | strong coupling |
87 | ″ | ″ | structure |
88 | ″ | ″ | study |
89 | ″ | ″ | substantial narrowing |
90 | ″ | ″ | time T1 |
91 | ″ | ″ | unpaired electron |
92 | ″ | ″ | unpaired electron wave function |
93 | ″ | ″ | wave functions |
94 | ″ | schema:name | Probing of the shallow donor and acceptor wave functions in silicon carbide and silicon through an EPR study of crystals with a modified isotopic composition |
95 | ″ | schema:pagination | 2219-2232 |
96 | ″ | schema:productId | N76c505e366864219abb7e69aa9e93179 |
97 | ″ | ″ | N87d3c563cac048caba53a07fb9afcafd |
98 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1034152860 |
99 | ″ | ″ | https://doi.org/10.1134/1.2142882 |
100 | ″ | schema:sdDatePublished | 2022-05-20T07:23 |
101 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
102 | ″ | schema:sdPublisher | Nf2a7e1afdbb943e9b0268ee61a5e8745 |
103 | ″ | schema:url | https://doi.org/10.1134/1.2142882 |
104 | ″ | sgo:license | sg:explorer/license/ |
105 | ″ | sgo:sdDataset | articles |
106 | ″ | rdf:type | schema:ScholarlyArticle |
107 | N20e0aee8bc524f718a5de792795f358a | rdf:first | sg:person.015440263604.97 |
108 | ″ | rdf:rest | rdf:nil |
109 | N66fb872657344982a5076705b7ec7c7b | schema:issueNumber | 12 |
110 | ″ | rdf:type | schema:PublicationIssue |
111 | N6d89f4044a9f433d9c63c61bf7bddf42 | rdf:first | sg:person.012015450711.18 |
112 | ″ | rdf:rest | Naac9b94554014e62add0a679441db7aa |
113 | N76c505e366864219abb7e69aa9e93179 | schema:name | doi |
114 | ″ | schema:value | 10.1134/1.2142882 |
115 | ″ | rdf:type | schema:PropertyValue |
116 | N7a03f09f8c95441db26aa34d36383202 | rdf:first | sg:person.014155573051.73 |
117 | ″ | rdf:rest | Nf855d9b507174844a06156b459b48de8 |
118 | N87d3c563cac048caba53a07fb9afcafd | schema:name | dimensions_id |
119 | ″ | schema:value | pub.1034152860 |
120 | ″ | rdf:type | schema:PropertyValue |
121 | N924f059f657e47e2bfbd470d505c4e62 | rdf:first | sg:person.012324031326.80 |
122 | ″ | rdf:rest | Nfdd43fc9536d435699febcd976b80191 |
123 | Naac9b94554014e62add0a679441db7aa | rdf:first | sg:person.014317537257.05 |
124 | ″ | rdf:rest | N924f059f657e47e2bfbd470d505c4e62 |
125 | Nacfc34440e1f497d8b1982c9a44cc812 | rdf:first | sg:person.014454350336.50 |
126 | ″ | rdf:rest | N20e0aee8bc524f718a5de792795f358a |
127 | Nc2b9608c647b4713afcc05b6d57efc24 | rdf:first | sg:person.0726165524.63 |
128 | ″ | rdf:rest | Nd6b45435ad2143f09d0ad3663dc1491c |
129 | Nd6b45435ad2143f09d0ad3663dc1491c | rdf:first | sg:person.013474671571.59 |
130 | ″ | rdf:rest | N6d89f4044a9f433d9c63c61bf7bddf42 |
131 | Nf2a7e1afdbb943e9b0268ee61a5e8745 | schema:name | Springer Nature - SN SciGraph project |
132 | ″ | rdf:type | schema:Organization |
133 | Nf855d9b507174844a06156b459b48de8 | rdf:first | sg:person.010422507711.64 |
134 | ″ | rdf:rest | Nacfc34440e1f497d8b1982c9a44cc812 |
135 | Nfdd43fc9536d435699febcd976b80191 | rdf:first | sg:person.016652260422.42 |
136 | ″ | rdf:rest | N7a03f09f8c95441db26aa34d36383202 |
137 | Nfdf81611cb75490ba5b0a21d30960787 | schema:volumeNumber | 47 |
138 | ″ | rdf:type | schema:PublicationVolume |
139 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
140 | ″ | schema:name | Physical Sciences |
141 | ″ | rdf:type | schema:DefinedTerm |
142 | anzsrc-for:0203 | schema:inDefinedTermSet | anzsrc-for: |
143 | ″ | schema:name | Classical Physics |
144 | ″ | rdf:type | schema:DefinedTerm |
145 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
146 | ″ | schema:name | Condensed Matter Physics |
147 | ″ | rdf:type | schema:DefinedTerm |
148 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
149 | ″ | schema:name | Quantum Physics |
150 | ″ | rdf:type | schema:DefinedTerm |
151 | sg:journal.1136591 | schema:issn | 0367-3294 |
152 | ″ | ″ | 1063-7834 |
153 | ″ | schema:name | Physics of the Solid State |
154 | ″ | schema:publisher | Pleiades Publishing |
155 | ″ | rdf:type | schema:Periodical |
156 | sg:person.010422507711.64 | schema:affiliation | grid-institutes:grid.423485.c |
157 | ″ | schema:familyName | Kaliteevskii |
158 | ″ | schema:givenName | A. K. |
159 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010422507711.64 |
160 | ″ | rdf:type | schema:Person |
161 | sg:person.012015450711.18 | schema:affiliation | grid-institutes:None |
162 | ″ | schema:familyName | Godisov |
163 | ″ | schema:givenName | O. N. |
164 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015450711.18 |
165 | ″ | rdf:type | schema:Person |
166 | sg:person.012324031326.80 | schema:affiliation | grid-institutes:grid.423485.c |
167 | ″ | schema:familyName | Ionov |
168 | ″ | schema:givenName | A. N. |
169 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012324031326.80 |
170 | ″ | rdf:type | schema:Person |
171 | sg:person.013474671571.59 | schema:affiliation | grid-institutes:grid.423485.c |
172 | ″ | schema:familyName | Ber |
173 | ″ | schema:givenName | B. Ya. |
174 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013474671571.59 |
175 | ″ | rdf:type | schema:Person |
176 | sg:person.014155573051.73 | schema:affiliation | grid-institutes:grid.423485.c |
177 | ″ | schema:familyName | Muzafarova |
178 | ″ | schema:givenName | M. V. |
179 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014155573051.73 |
180 | ″ | rdf:type | schema:Person |
181 | sg:person.014317537257.05 | schema:affiliation | grid-institutes:grid.423485.c |
182 | ″ | schema:familyName | Il’in |
183 | ″ | schema:givenName | I. V. |
184 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014317537257.05 |
185 | ″ | rdf:type | schema:Person |
186 | sg:person.014454350336.50 | schema:affiliation | grid-institutes:None |
187 | ″ | schema:familyName | Kaliteevskii |
188 | ″ | schema:givenName | M. A. |
189 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014454350336.50 |
190 | ″ | rdf:type | schema:Person |
191 | sg:person.015440263604.97 | schema:affiliation | grid-institutes:grid.423485.c |
192 | ″ | schema:familyName | Kop’ev |
193 | ″ | schema:givenName | P. S. |
194 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015440263604.97 |
195 | ″ | rdf:type | schema:Person |
196 | sg:person.016652260422.42 | schema:affiliation | grid-institutes:grid.423485.c |
197 | ″ | schema:familyName | Mokhov |
198 | ″ | schema:givenName | E. N. |
199 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016652260422.42 |
200 | ″ | rdf:type | schema:Person |
201 | sg:person.0726165524.63 | schema:affiliation | grid-institutes:grid.423485.c |
202 | ″ | schema:familyName | Baranov |
203 | ″ | schema:givenName | P. G. |
204 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726165524.63 |
205 | ″ | rdf:type | schema:Person |
206 | sg:pub.10.1007/978-1-4684-0904-8_4 | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1016816187 |
207 | ″ | ″ | https://doi.org/10.1007/978-1-4684-0904-8_4 |
208 | ″ | rdf:type | schema:CreativeWork |
209 | grid-institutes:None | schema:alternateName | CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia |
210 | ″ | schema:name | CENTROTECH EHZ, pr. Stachek 47, 198096, St. Petersburg, Russia |
211 | ″ | rdf:type | schema:Organization |
212 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
213 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
214 | ″ | rdf:type | schema:Organization |