On the role of vacancies in pore formation in the course of anodizing of silicon carbide View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-09

AUTHORS

M. G. Mynbaeva, D. A. Bauman, K. D. Mynbaev

ABSTRACT

Experimental data on the preparation of stoichiometric nanoporous silicon carbide are analyzed. Theoretical calculations are performed under the assumption that nanopores are formed through the vacancy diffusion mechanism. The results obtained confirm the hypothesis that the formation of pores with a steadystate radius of several tens of nanometers in silicon carbide can be associated with the diffusion and clustering of vacancies. The experimental data indicating that the proposed mechanism of formation of nanoporous silicon carbide correlates with the existing model of formation of porous silicon carbide with a fiber structure are discussed. This correlation can be revealed by assuming that nanopores are formed at the first stage with subsequent transformation of the nanoporous structure into a fiber structure due to the dissolution of the material in an electrolyte. More... »

PAGES

1630-1636

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.2045345

DOI

http://dx.doi.org/10.1134/1.2045345

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1040208726


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mynbaeva", 
        "givenName": "M. G.", 
        "id": "sg:person.07660667737.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660667737.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauman", 
        "givenName": "D. A.", 
        "id": "sg:person.014072521617.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072521617.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mynbaev", 
        "givenName": "K. D.", 
        "id": "sg:person.010274772027.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1557/proc-742-k3.1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1067954825", 
          "https://doi.org/10.1557/proc-742-k3.1"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-09", 
    "datePublishedReg": "2005-09-01", 
    "description": "Experimental data on the preparation of stoichiometric nanoporous silicon carbide are analyzed. Theoretical calculations are performed under the assumption that nanopores are formed through the vacancy diffusion mechanism. The results obtained confirm the hypothesis that the formation of pores with a steadystate radius of several tens of nanometers in silicon carbide can be associated with the diffusion and clustering of vacancies. The experimental data indicating that the proposed mechanism of formation of nanoporous silicon carbide correlates with the existing model of formation of porous silicon carbide with a fiber structure are discussed. This correlation can be revealed by assuming that nanopores are formed at the first stage with subsequent transformation of the nanoporous structure into a fiber structure due to the dissolution of the material in an electrolyte.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.2045345", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "9", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "47"
      }
    ], 
    "keywords": [
      "silicon carbide", 
      "porous silicon carbide", 
      "nanoporous silicon carbide", 
      "fiber structure", 
      "experimental data", 
      "tens of nanometers", 
      "formation of pores", 
      "nanoporous structure", 
      "carbide", 
      "vacancy diffusion mechanism", 
      "clustering of vacancies", 
      "diffusion mechanism", 
      "role of vacancies", 
      "nanopores", 
      "anodizing", 
      "mechanism of formation", 
      "first stage", 
      "pore formation", 
      "vacancies", 
      "theoretical calculations", 
      "nanometers", 
      "model of formation", 
      "structure", 
      "pores", 
      "electrolyte", 
      "materials", 
      "dissolution", 
      "diffusion", 
      "formation", 
      "radius", 
      "tens", 
      "subsequent transformation", 
      "calculations", 
      "model", 
      "preparation", 
      "mechanism", 
      "results", 
      "transformation", 
      "assumption", 
      "data", 
      "stage", 
      "correlation", 
      "clustering", 
      "role", 
      "course", 
      "hypothesis", 
      "correlates", 
      "stoichiometric nanoporous silicon carbide", 
      "steadystate radius", 
      "nanoporous silicon carbide correlates", 
      "silicon carbide correlates", 
      "carbide correlates", 
      "course of anodizing"
    ], 
    "name": "On the role of vacancies in pore formation in the course of anodizing of silicon carbide", 
    "pagination": "1630-1636", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1040208726"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.2045345"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.2045345", 
      "https://app.dimensions.ai/details/publication/pub.1040208726"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2021-11-01T18:08", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_400.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.2045345"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.2045345'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.2045345'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.2045345'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.2045345'


 

This table displays all metadata directly associated to this object as RDF triples.

137 TRIPLES      22 PREDICATES      82 URIs      71 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.2045345 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nbc9c6b11015d4617a4ffba3aa75835a6
6 schema:citation sg:pub.10.1557/proc-742-k3.1
7 schema:datePublished 2005-09
8 schema:datePublishedReg 2005-09-01
9 schema:description Experimental data on the preparation of stoichiometric nanoporous silicon carbide are analyzed. Theoretical calculations are performed under the assumption that nanopores are formed through the vacancy diffusion mechanism. The results obtained confirm the hypothesis that the formation of pores with a steadystate radius of several tens of nanometers in silicon carbide can be associated with the diffusion and clustering of vacancies. The experimental data indicating that the proposed mechanism of formation of nanoporous silicon carbide correlates with the existing model of formation of porous silicon carbide with a fiber structure are discussed. This correlation can be revealed by assuming that nanopores are formed at the first stage with subsequent transformation of the nanoporous structure into a fiber structure due to the dissolution of the material in an electrolyte.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N88042009cda3437d87ba5de1454fba69
14 Nd07b3b252b244976bf99b47c8560c65d
15 sg:journal.1136591
16 schema:keywords anodizing
17 assumption
18 calculations
19 carbide
20 carbide correlates
21 clustering
22 clustering of vacancies
23 correlates
24 correlation
25 course
26 course of anodizing
27 data
28 diffusion
29 diffusion mechanism
30 dissolution
31 electrolyte
32 experimental data
33 fiber structure
34 first stage
35 formation
36 formation of pores
37 hypothesis
38 materials
39 mechanism
40 mechanism of formation
41 model
42 model of formation
43 nanometers
44 nanopores
45 nanoporous silicon carbide
46 nanoporous silicon carbide correlates
47 nanoporous structure
48 pore formation
49 pores
50 porous silicon carbide
51 preparation
52 radius
53 results
54 role
55 role of vacancies
56 silicon carbide
57 silicon carbide correlates
58 stage
59 steadystate radius
60 stoichiometric nanoporous silicon carbide
61 structure
62 subsequent transformation
63 tens
64 tens of nanometers
65 theoretical calculations
66 transformation
67 vacancies
68 vacancy diffusion mechanism
69 schema:name On the role of vacancies in pore formation in the course of anodizing of silicon carbide
70 schema:pagination 1630-1636
71 schema:productId N139913e02f404e8f8760265442e7b135
72 N4bb091937af348679432f25ed482d252
73 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040208726
74 https://doi.org/10.1134/1.2045345
75 schema:sdDatePublished 2021-11-01T18:08
76 schema:sdLicense https://scigraph.springernature.com/explorer/license/
77 schema:sdPublisher N42421d42e32c4f508bbb191557c91de1
78 schema:url https://doi.org/10.1134/1.2045345
79 sgo:license sg:explorer/license/
80 sgo:sdDataset articles
81 rdf:type schema:ScholarlyArticle
82 N139913e02f404e8f8760265442e7b135 schema:name doi
83 schema:value 10.1134/1.2045345
84 rdf:type schema:PropertyValue
85 N42421d42e32c4f508bbb191557c91de1 schema:name Springer Nature - SN SciGraph project
86 rdf:type schema:Organization
87 N4bb091937af348679432f25ed482d252 schema:name dimensions_id
88 schema:value pub.1040208726
89 rdf:type schema:PropertyValue
90 N88042009cda3437d87ba5de1454fba69 schema:volumeNumber 47
91 rdf:type schema:PublicationVolume
92 Nbc9c6b11015d4617a4ffba3aa75835a6 rdf:first sg:person.07660667737.36
93 rdf:rest Nc67a8f44959f49f793a8864cf5e886a7
94 Nc0fa6e7da4be4375ab6cd442e0aaa036 rdf:first sg:person.010274772027.40
95 rdf:rest rdf:nil
96 Nc67a8f44959f49f793a8864cf5e886a7 rdf:first sg:person.014072521617.37
97 rdf:rest Nc0fa6e7da4be4375ab6cd442e0aaa036
98 Nd07b3b252b244976bf99b47c8560c65d schema:issueNumber 9
99 rdf:type schema:PublicationIssue
100 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
101 schema:name Physical Sciences
102 rdf:type schema:DefinedTerm
103 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
104 schema:name Classical Physics
105 rdf:type schema:DefinedTerm
106 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
107 schema:name Condensed Matter Physics
108 rdf:type schema:DefinedTerm
109 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
110 schema:name Quantum Physics
111 rdf:type schema:DefinedTerm
112 sg:journal.1136591 schema:issn 0367-3294
113 1063-7834
114 schema:name Physics of the Solid State
115 schema:publisher Pleiades Publishing
116 rdf:type schema:Periodical
117 sg:person.010274772027.40 schema:affiliation grid-institutes:grid.423485.c
118 schema:familyName Mynbaev
119 schema:givenName K. D.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010274772027.40
121 rdf:type schema:Person
122 sg:person.014072521617.37 schema:affiliation grid-institutes:grid.423485.c
123 schema:familyName Bauman
124 schema:givenName D. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014072521617.37
126 rdf:type schema:Person
127 sg:person.07660667737.36 schema:affiliation grid-institutes:grid.423485.c
128 schema:familyName Mynbaeva
129 schema:givenName M. G.
130 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07660667737.36
131 rdf:type schema:Person
132 sg:pub.10.1557/proc-742-k3.1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1067954825
133 https://doi.org/10.1557/proc-742-k3.1
134 rdf:type schema:CreativeWork
135 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
136 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
137 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...