The transition from thermodynamically to kinetically controlled formation of quantum dots in an InAs/GaAs(100) system View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2005-07

AUTHORS

Yu. G. Musikhin, G. E. Cirlin, V. G. Dubrovskii, Yu. B. Samsonenko, A. A. Tonkikh, N. A. Bert, V. M. Ustinov

ABSTRACT

The results of experimental and theoretical studies of quantum dot formation in an InAs/GaAs(100) system in the case of a subcritical width of the deposited InAs layer (1.5–1.6 monolayers) are presented. It is shown that, in the subcritical range of InAs thicknesses (smaller than 1.6 monolayers), regardless of the deposition rate, the density of quantum dots increases and their size decreases in response to an increase in surface temperature. In the overcritical range of InAs thicknesses (more than 1.8 monolayers), the density of quantum dots increases and their size decreases in response to a decrease in temperature and an increase in the deposition rate. The observed behavior of quantum dot morphology is attributed to the transition from a thermodynamically to kinetically controlled regime of quantum dot formation near the critical thickness. More... »

PAGES

820-825

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1992641

DOI

http://dx.doi.org/10.1134/1.1992641

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029027709


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Musikhin", 
        "givenName": "Yu. G.", 
        "id": "sg:person.014603755431.88", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Institute of Analytical Instrument Making, Russian Academy of Sciences, Rizhskii pr. 26, 190103, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Cirlin", 
        "givenName": "G. E.", 
        "id": "sg:person.07635774653.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07635774653.28"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Dubrovskii", 
        "givenName": "V. G.", 
        "id": "sg:person.0652004760.89", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652004760.89"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Institute of Analytical Instrument Making, Russian Academy of Sciences, Rizhskii pr. 26, 190103, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Samsonenko", 
        "givenName": "Yu. B.", 
        "id": "sg:person.016561315174.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561315174.96"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
            "Institute of Analytical Instrument Making, Russian Academy of Sciences, Rizhskii pr. 26, 190103, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tonkikh", 
        "givenName": "A. A.", 
        "id": "sg:person.012377461417.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377461417.99"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bert", 
        "givenName": "N. A.", 
        "id": "sg:person.010314101551.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Institute", 
          "id": "https://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ustinov", 
        "givenName": "V. M.", 
        "id": "sg:person.010616411412.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/pssb.200409049", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005265794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jcrysgro.2004.03.055", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009688468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020096078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.3708", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020096078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0953-8984/16/39/025", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041199531"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0169-4332(96)00009-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051747197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-4332(01)00727-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053660755"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.111502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057659061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.124284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057688421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r4213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.53.r4213", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060581058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.165306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.165306", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601084"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.205421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.64.205421", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060601397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.075409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.68.075409", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060607293"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.236101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.236101", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060824077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/acprof:oso/9780198526797.001.0001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098742493"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005-07", 
    "datePublishedReg": "2005-07-01", 
    "description": "The results of experimental and theoretical studies of quantum dot formation in an InAs/GaAs(100) system in the case of a subcritical width of the deposited InAs layer (1.5\u20131.6 monolayers) are presented. It is shown that, in the subcritical range of InAs thicknesses (smaller than 1.6 monolayers), regardless of the deposition rate, the density of quantum dots increases and their size decreases in response to an increase in surface temperature. In the overcritical range of InAs thicknesses (more than 1.8 monolayers), the density of quantum dots increases and their size decreases in response to a decrease in temperature and an increase in the deposition rate. The observed behavior of quantum dot morphology is attributed to the transition from a thermodynamically to kinetically controlled regime of quantum dot formation near the critical thickness.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1992641", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136692", 
        "issn": [
          "1063-7826", 
          "1090-6479"
        ], 
        "name": "Semiconductors", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "39"
      }
    ], 
    "name": "The transition from thermodynamically to kinetically controlled formation of quantum dots in an InAs/GaAs(100) system", 
    "pagination": "820-825", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8a4832d7715b01ca7931d74c8bc12a181df142a2d0582828acbed198e00e8a60"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1992641"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029027709"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1992641", 
      "https://app.dimensions.ai/details/publication/pub.1029027709"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-11T11:05", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000352_0000000352/records_60372_00000000.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1992641"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1992641'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1992641'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1992641'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1992641'


 

This table displays all metadata directly associated to this object as RDF triples.

149 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1992641 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author N35e2dc6396ae4c839a5825d4e6fb4a77
4 schema:citation https://doi.org/10.1002/pssb.200409049
5 https://doi.org/10.1016/0169-4332(96)00009-8
6 https://doi.org/10.1016/j.jcrysgro.2004.03.055
7 https://doi.org/10.1016/s0169-4332(01)00727-9
8 https://doi.org/10.1063/1.111502
9 https://doi.org/10.1063/1.124284
10 https://doi.org/10.1088/0953-8984/16/39/025
11 https://doi.org/10.1093/acprof:oso/9780198526797.001.0001
12 https://doi.org/10.1103/physrevb.53.r4213
13 https://doi.org/10.1103/physrevb.64.165306
14 https://doi.org/10.1103/physrevb.64.205421
15 https://doi.org/10.1103/physrevb.68.075409
16 https://doi.org/10.1103/physrevlett.79.3708
17 https://doi.org/10.1103/physrevlett.87.236101
18 schema:datePublished 2005-07
19 schema:datePublishedReg 2005-07-01
20 schema:description The results of experimental and theoretical studies of quantum dot formation in an InAs/GaAs(100) system in the case of a subcritical width of the deposited InAs layer (1.5–1.6 monolayers) are presented. It is shown that, in the subcritical range of InAs thicknesses (smaller than 1.6 monolayers), regardless of the deposition rate, the density of quantum dots increases and their size decreases in response to an increase in surface temperature. In the overcritical range of InAs thicknesses (more than 1.8 monolayers), the density of quantum dots increases and their size decreases in response to a decrease in temperature and an increase in the deposition rate. The observed behavior of quantum dot morphology is attributed to the transition from a thermodynamically to kinetically controlled regime of quantum dot formation near the critical thickness.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree false
24 schema:isPartOf N36a6eb85a144495589ff53f681ee80d2
25 Nfe0f44a5deaf4e7a87b780c4e73b9783
26 sg:journal.1136692
27 schema:name The transition from thermodynamically to kinetically controlled formation of quantum dots in an InAs/GaAs(100) system
28 schema:pagination 820-825
29 schema:productId N1f3966ebf3be45ed985f39977e20fdfa
30 N4d31237cdc4047a78942463981698ddf
31 Nf1c3138f33234cb98d3485eac3f81753
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029027709
33 https://doi.org/10.1134/1.1992641
34 schema:sdDatePublished 2019-04-11T11:05
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3c9b682c37e545df900ec5d0f974b600
37 schema:url http://link.springer.com/10.1134/1.1992641
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N0a315e785bb544dc9c9b040948246c0a rdf:first sg:person.07635774653.28
42 rdf:rest N32bf4384495e4fa5b5c9222318346648
43 N1f3966ebf3be45ed985f39977e20fdfa schema:name dimensions_id
44 schema:value pub.1029027709
45 rdf:type schema:PropertyValue
46 N32bf4384495e4fa5b5c9222318346648 rdf:first sg:person.0652004760.89
47 rdf:rest Nb6caac603d92422eb1f4e9a600505837
48 N35e2dc6396ae4c839a5825d4e6fb4a77 rdf:first sg:person.014603755431.88
49 rdf:rest N0a315e785bb544dc9c9b040948246c0a
50 N36a6eb85a144495589ff53f681ee80d2 schema:issueNumber 7
51 rdf:type schema:PublicationIssue
52 N3c9b682c37e545df900ec5d0f974b600 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N416169b47d7b4d74b8addff4aba2dcef rdf:first sg:person.010314101551.02
55 rdf:rest Nbeabcfb801b24ffc8f2a717abebfb48d
56 N4d31237cdc4047a78942463981698ddf schema:name doi
57 schema:value 10.1134/1.1992641
58 rdf:type schema:PropertyValue
59 N5b9c341dca0d4471a295f1dd8f5bcf36 rdf:first sg:person.012377461417.99
60 rdf:rest N416169b47d7b4d74b8addff4aba2dcef
61 Nb6caac603d92422eb1f4e9a600505837 rdf:first sg:person.016561315174.96
62 rdf:rest N5b9c341dca0d4471a295f1dd8f5bcf36
63 Nbeabcfb801b24ffc8f2a717abebfb48d rdf:first sg:person.010616411412.30
64 rdf:rest rdf:nil
65 Nf1c3138f33234cb98d3485eac3f81753 schema:name readcube_id
66 schema:value 8a4832d7715b01ca7931d74c8bc12a181df142a2d0582828acbed198e00e8a60
67 rdf:type schema:PropertyValue
68 Nfe0f44a5deaf4e7a87b780c4e73b9783 schema:volumeNumber 39
69 rdf:type schema:PublicationVolume
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:journal.1136692 schema:issn 1063-7826
77 1090-6479
78 schema:name Semiconductors
79 rdf:type schema:Periodical
80 sg:person.010314101551.02 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
81 schema:familyName Bert
82 schema:givenName N. A.
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010314101551.02
84 rdf:type schema:Person
85 sg:person.010616411412.30 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
86 schema:familyName Ustinov
87 schema:givenName V. M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010616411412.30
89 rdf:type schema:Person
90 sg:person.012377461417.99 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
91 schema:familyName Tonkikh
92 schema:givenName A. A.
93 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012377461417.99
94 rdf:type schema:Person
95 sg:person.014603755431.88 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
96 schema:familyName Musikhin
97 schema:givenName Yu. G.
98 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014603755431.88
99 rdf:type schema:Person
100 sg:person.016561315174.96 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
101 schema:familyName Samsonenko
102 schema:givenName Yu. B.
103 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016561315174.96
104 rdf:type schema:Person
105 sg:person.0652004760.89 schema:affiliation https://www.grid.ac/institutes/grid.423485.c
106 schema:familyName Dubrovskii
107 schema:givenName V. G.
108 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0652004760.89
109 rdf:type schema:Person
110 sg:person.07635774653.28 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
111 schema:familyName Cirlin
112 schema:givenName G. E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07635774653.28
114 rdf:type schema:Person
115 https://doi.org/10.1002/pssb.200409049 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005265794
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1016/0169-4332(96)00009-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051747197
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1016/j.jcrysgro.2004.03.055 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009688468
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1016/s0169-4332(01)00727-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053660755
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1063/1.111502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057659061
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1063/1.124284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057688421
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1088/0953-8984/16/39/025 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041199531
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1093/acprof:oso/9780198526797.001.0001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098742493
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physrevb.53.r4213 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060581058
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevb.64.165306 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601084
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevb.64.205421 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060601397
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevb.68.075409 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060607293
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.79.3708 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020096078
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.87.236101 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060824077
142 rdf:type schema:CreativeWork
143 https://www.grid.ac/institutes/grid.423485.c schema:alternateName Ioffe Institute
144 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
145 rdf:type schema:Organization
146 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
147 schema:name Institute of Analytical Instrument Making, Russian Academy of Sciences, Rizhskii pr. 26, 190103, St. Petersburg, Russia
148 Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
149 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...