Ontology type: schema:ScholarlyArticle
2005-07
AUTHORSN. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii
ABSTRACTA model is developed according to which a hop of an electron (or hole) between two hydrogenic donors (or acceptors) occurs only when their energy levels become equal due to thermal and/or electrostatic fluctuations in a doped crystal. The main contribution to the real part of the high-frequency hopping electrical conductivity is assumed to come from acceptor pairs in which the time of hole tunneling is equal to the half-period of the external electric field and the phase of tunneling coincides with that of the field. In this case, the imaginary and real parts of the hopping conductivity are approximately equal. The results of calculations based on this model are compared to the experimental data for p-Ge: Ga with an intermediate degree of compensation of the main doping impurity. More... »
PAGES1236-1244
http://scigraph.springernature.com/pub.10.1134/1.1992598
DOIhttp://dx.doi.org/10.1134/1.1992598
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1036314096
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Classical Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Condensed Matter Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Quantum Physics",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Poklonski",
"givenName": "N. A.",
"id": "sg:person.015505352225.90",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus",
"id": "http://www.grid.ac/institutes/grid.17678.3f",
"name": [
"Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus"
],
"type": "Organization"
},
"familyName": "Vyrko",
"givenName": "S. A.",
"id": "sg:person.0742524034.73",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia",
"id": "http://www.grid.ac/institutes/grid.423485.c",
"name": [
"Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
],
"type": "Organization"
},
"familyName": "Zabrodskii",
"givenName": "A. G.",
"id": "sg:person.016623532707.36",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
],
"type": "Person"
}
],
"datePublished": "2005-07",
"datePublishedReg": "2005-07-01",
"description": "A model is developed according to which a hop of an electron (or hole) between two hydrogenic donors (or acceptors) occurs only when their energy levels become equal due to thermal and/or electrostatic fluctuations in a doped crystal. The main contribution to the real part of the high-frequency hopping electrical conductivity is assumed to come from acceptor pairs in which the time of hole tunneling is equal to the half-period of the external electric field and the phase of tunneling coincides with that of the field. In this case, the imaginary and real parts of the hopping conductivity are approximately equal. The results of calculations based on this model are compared to the experimental data for p-Ge: Ga with an intermediate degree of compensation of the main doping impurity.",
"genre": "article",
"id": "sg:pub.10.1134/1.1992598",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": [
{
"id": "sg:journal.1136591",
"issn": [
"0367-3294",
"1063-7834"
],
"name": "Physics of the Solid State",
"publisher": "Pleiades Publishing",
"type": "Periodical"
},
{
"issueNumber": "7",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "47"
}
],
"keywords": [
"electrical conductivity",
"external electric field",
"doping impurities",
"electric field",
"results of calculations",
"conductivity",
"electrostatic fluctuations",
"real part",
"experimental data",
"hopping conductivity",
"hole tunneling",
"impurities",
"fluctuation model",
"semiconductors",
"main contribution",
"gas",
"energy levels",
"field",
"Ge",
"model",
"compensation",
"tunneling",
"phase",
"calculations",
"fluctuations",
"crystals",
"part",
"hydrogenic impurity",
"hydrogenic donor",
"results",
"electrons",
"time",
"acceptor pair",
"degree",
"contribution",
"coincide",
"intermediate degree",
"data",
"cases",
"pairs",
"hop",
"levels",
"donors"
],
"name": "Fluctuation model of the high-frequency hopping electrical conductivity of moderately compensated semiconductors with hydrogenic impurities",
"pagination": "1236-1244",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1036314096"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/1.1992598"
]
}
],
"sameAs": [
"https://doi.org/10.1134/1.1992598",
"https://app.dimensions.ai/details/publication/pub.1036314096"
],
"sdDataset": "articles",
"sdDatePublished": "2022-05-10T09:52",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_398.jsonl",
"type": "ScholarlyArticle",
"url": "https://doi.org/10.1134/1.1992598"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1992598'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1992598'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1992598'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1992598'
This table displays all metadata directly associated to this object as RDF triples.
126 TRIPLES
21 PREDICATES
71 URIs
61 LITERALS
6 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1134/1.1992598 | schema:about | anzsrc-for:02 |
2 | ″ | ″ | anzsrc-for:0203 |
3 | ″ | ″ | anzsrc-for:0204 |
4 | ″ | ″ | anzsrc-for:0206 |
5 | ″ | schema:author | Na183d2518c164168a6c67ecbf1f3cf6e |
6 | ″ | schema:datePublished | 2005-07 |
7 | ″ | schema:datePublishedReg | 2005-07-01 |
8 | ″ | schema:description | A model is developed according to which a hop of an electron (or hole) between two hydrogenic donors (or acceptors) occurs only when their energy levels become equal due to thermal and/or electrostatic fluctuations in a doped crystal. The main contribution to the real part of the high-frequency hopping electrical conductivity is assumed to come from acceptor pairs in which the time of hole tunneling is equal to the half-period of the external electric field and the phase of tunneling coincides with that of the field. In this case, the imaginary and real parts of the hopping conductivity are approximately equal. The results of calculations based on this model are compared to the experimental data for p-Ge: Ga with an intermediate degree of compensation of the main doping impurity. |
9 | ″ | schema:genre | article |
10 | ″ | schema:inLanguage | en |
11 | ″ | schema:isAccessibleForFree | false |
12 | ″ | schema:isPartOf | Na328a915da6e4c3885019bd98d40e56d |
13 | ″ | ″ | Nf048e98d6df84fb1a82eb5cd77cbc677 |
14 | ″ | ″ | sg:journal.1136591 |
15 | ″ | schema:keywords | Ge |
16 | ″ | ″ | acceptor pair |
17 | ″ | ″ | calculations |
18 | ″ | ″ | cases |
19 | ″ | ″ | coincide |
20 | ″ | ″ | compensation |
21 | ″ | ″ | conductivity |
22 | ″ | ″ | contribution |
23 | ″ | ″ | crystals |
24 | ″ | ″ | data |
25 | ″ | ″ | degree |
26 | ″ | ″ | donors |
27 | ″ | ″ | doping impurities |
28 | ″ | ″ | electric field |
29 | ″ | ″ | electrical conductivity |
30 | ″ | ″ | electrons |
31 | ″ | ″ | electrostatic fluctuations |
32 | ″ | ″ | energy levels |
33 | ″ | ″ | experimental data |
34 | ″ | ″ | external electric field |
35 | ″ | ″ | field |
36 | ″ | ″ | fluctuation model |
37 | ″ | ″ | fluctuations |
38 | ″ | ″ | gas |
39 | ″ | ″ | hole tunneling |
40 | ″ | ″ | hop |
41 | ″ | ″ | hopping conductivity |
42 | ″ | ″ | hydrogenic donor |
43 | ″ | ″ | hydrogenic impurity |
44 | ″ | ″ | impurities |
45 | ″ | ″ | intermediate degree |
46 | ″ | ″ | levels |
47 | ″ | ″ | main contribution |
48 | ″ | ″ | model |
49 | ″ | ″ | pairs |
50 | ″ | ″ | part |
51 | ″ | ″ | phase |
52 | ″ | ″ | real part |
53 | ″ | ″ | results |
54 | ″ | ″ | results of calculations |
55 | ″ | ″ | semiconductors |
56 | ″ | ″ | time |
57 | ″ | ″ | tunneling |
58 | ″ | schema:name | Fluctuation model of the high-frequency hopping electrical conductivity of moderately compensated semiconductors with hydrogenic impurities |
59 | ″ | schema:pagination | 1236-1244 |
60 | ″ | schema:productId | N6486ca319bd34da0ae7e19be077a1d9b |
61 | ″ | ″ | N816a951a950c4ce98f6fb7261a536827 |
62 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1036314096 |
63 | ″ | ″ | https://doi.org/10.1134/1.1992598 |
64 | ″ | schema:sdDatePublished | 2022-05-10T09:52 |
65 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
66 | ″ | schema:sdPublisher | N06a3425d21e44199826b462ee6ef4f96 |
67 | ″ | schema:url | https://doi.org/10.1134/1.1992598 |
68 | ″ | sgo:license | sg:explorer/license/ |
69 | ″ | sgo:sdDataset | articles |
70 | ″ | rdf:type | schema:ScholarlyArticle |
71 | N06a3425d21e44199826b462ee6ef4f96 | schema:name | Springer Nature - SN SciGraph project |
72 | ″ | rdf:type | schema:Organization |
73 | N257a460d31f546418a6526f9513ebfb9 | rdf:first | sg:person.016623532707.36 |
74 | ″ | rdf:rest | rdf:nil |
75 | N595b283f88b74a8fb392a739a2861146 | rdf:first | sg:person.0742524034.73 |
76 | ″ | rdf:rest | N257a460d31f546418a6526f9513ebfb9 |
77 | N6486ca319bd34da0ae7e19be077a1d9b | schema:name | dimensions_id |
78 | ″ | schema:value | pub.1036314096 |
79 | ″ | rdf:type | schema:PropertyValue |
80 | N816a951a950c4ce98f6fb7261a536827 | schema:name | doi |
81 | ″ | schema:value | 10.1134/1.1992598 |
82 | ″ | rdf:type | schema:PropertyValue |
83 | Na183d2518c164168a6c67ecbf1f3cf6e | rdf:first | sg:person.015505352225.90 |
84 | ″ | rdf:rest | N595b283f88b74a8fb392a739a2861146 |
85 | Na328a915da6e4c3885019bd98d40e56d | schema:volumeNumber | 47 |
86 | ″ | rdf:type | schema:PublicationVolume |
87 | Nf048e98d6df84fb1a82eb5cd77cbc677 | schema:issueNumber | 7 |
88 | ″ | rdf:type | schema:PublicationIssue |
89 | anzsrc-for:02 | schema:inDefinedTermSet | anzsrc-for: |
90 | ″ | schema:name | Physical Sciences |
91 | ″ | rdf:type | schema:DefinedTerm |
92 | anzsrc-for:0203 | schema:inDefinedTermSet | anzsrc-for: |
93 | ″ | schema:name | Classical Physics |
94 | ″ | rdf:type | schema:DefinedTerm |
95 | anzsrc-for:0204 | schema:inDefinedTermSet | anzsrc-for: |
96 | ″ | schema:name | Condensed Matter Physics |
97 | ″ | rdf:type | schema:DefinedTerm |
98 | anzsrc-for:0206 | schema:inDefinedTermSet | anzsrc-for: |
99 | ″ | schema:name | Quantum Physics |
100 | ″ | rdf:type | schema:DefinedTerm |
101 | sg:journal.1136591 | schema:issn | 0367-3294 |
102 | ″ | ″ | 1063-7834 |
103 | ″ | schema:name | Physics of the Solid State |
104 | ″ | schema:publisher | Pleiades Publishing |
105 | ″ | rdf:type | schema:Periodical |
106 | sg:person.015505352225.90 | schema:affiliation | grid-institutes:grid.17678.3f |
107 | ″ | schema:familyName | Poklonski |
108 | ″ | schema:givenName | N. A. |
109 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90 |
110 | ″ | rdf:type | schema:Person |
111 | sg:person.016623532707.36 | schema:affiliation | grid-institutes:grid.423485.c |
112 | ″ | schema:familyName | Zabrodskii |
113 | ″ | schema:givenName | A. G. |
114 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36 |
115 | ″ | rdf:type | schema:Person |
116 | sg:person.0742524034.73 | schema:affiliation | grid-institutes:grid.17678.3f |
117 | ″ | schema:familyName | Vyrko |
118 | ″ | schema:givenName | S. A. |
119 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73 |
120 | ″ | rdf:type | schema:Person |
121 | grid-institutes:grid.17678.3f | schema:alternateName | Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus |
122 | ″ | schema:name | Belarussian State University, pr. Skoriny 4, 220050, Minsk, Belarus |
123 | ″ | rdf:type | schema:Organization |
124 | grid-institutes:grid.423485.c | schema:alternateName | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
125 | ″ | schema:name | Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia |
126 | ″ | rdf:type | schema:Organization |