Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-06

AUTHORS

N. A. Poklonski, S. A. Vyrko, A. G. Zabrodskii

ABSTRACT

Two electrostatic models have been developed that allow calculation of the critical concentration of hydrogen-like impurities in three-dimensional crystalline semiconductors corresponding to the insulator-metal and metal-insulator transition in the zero temperature limit. The insulator-metal transition manifests itself as a divergence of the static permittivity observed in lightly compensated semiconductors as the concentration of polarizable impurities increases to the critical level. The metal-insulator transition is signaled by the divergence of the dc electrical resistivity in heavily doped semiconductors as the compensation of the majority impurity increases (or its concentration decreases). The critical impurity concentration corresponds to the coincidence of the percolation level for the majority carriers with the Fermi level. The results of the calculations made with these models fit the experimental data obtained for n-and p-type silicon and germanium within a broad range of their doping levels and impurity compensation. More... »

PAGES

1101-1106

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1767252

DOI

http://dx.doi.org/10.1134/1.1767252

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1062736390


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonski", 
        "givenName": "N. A.", 
        "id": "sg:person.015505352225.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vyrko", 
        "givenName": "S. A.", 
        "id": "sg:person.0742524034.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zabrodskii", 
        "givenName": "A. G.", 
        "id": "sg:person.016623532707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00114337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051277718", 
          "https://doi.org/10.1007/bf00114337"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-06", 
    "datePublishedReg": "2004-06-01", 
    "description": "Two electrostatic models have been developed that allow calculation of the critical concentration of hydrogen-like impurities in three-dimensional crystalline semiconductors corresponding to the insulator-metal and metal-insulator transition in the zero temperature limit. The insulator-metal transition manifests itself as a divergence of the static permittivity observed in lightly compensated semiconductors as the concentration of polarizable impurities increases to the critical level. The metal-insulator transition is signaled by the divergence of the dc electrical resistivity in heavily doped semiconductors as the compensation of the majority impurity increases (or its concentration decreases). The critical impurity concentration corresponds to the coincidence of the percolation level for the majority carriers with the Fermi level. The results of the calculations made with these models fit the experimental data obtained for n-and p-type silicon and germanium within a broad range of their doping levels and impurity compensation.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.1767252", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "46"
      }
    ], 
    "keywords": [
      "hydrogen-like impurity", 
      "metal-insulator transition", 
      "DC electrical resistivity", 
      "critical impurity concentration", 
      "electrical resistivity", 
      "impurity compensation", 
      "crystalline semiconductors", 
      "type silicon", 
      "concentration phase transition", 
      "doping level", 
      "percolation level", 
      "majority carriers", 
      "Si crystals", 
      "semiconductors", 
      "majority impurity", 
      "impurity concentration", 
      "experimental data", 
      "insulator-metal transition", 
      "temperature limit", 
      "electrostatic model", 
      "impurities increases", 
      "phase transition", 
      "impurities", 
      "Fermi level", 
      "silicon", 
      "static permittivity", 
      "compensation", 
      "resistivity", 
      "permittivity", 
      "calculations", 
      "germanium", 
      "Ge", 
      "critical concentration", 
      "model", 
      "transition", 
      "critical level", 
      "broad range", 
      "concentration", 
      "divergence", 
      "range", 
      "carriers", 
      "crystals", 
      "limit", 
      "results", 
      "coincidence", 
      "increase", 
      "levels", 
      "data"
    ], 
    "name": "Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities", 
    "pagination": "1101-1106", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1062736390"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1767252"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1767252", 
      "https://app.dimensions.ai/details/publication/pub.1062736390"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-20T07:22", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/article/article_379.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.1767252"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1767252'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1767252'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1767252'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1767252'


 

This table displays all metadata directly associated to this object as RDF triples.

135 TRIPLES      22 PREDICATES      77 URIs      66 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1767252 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author Nc4fcba6cbf9f47aebeea66d9edbd8518
6 schema:citation sg:pub.10.1007/bf00114337
7 schema:datePublished 2004-06
8 schema:datePublishedReg 2004-06-01
9 schema:description Two electrostatic models have been developed that allow calculation of the critical concentration of hydrogen-like impurities in three-dimensional crystalline semiconductors corresponding to the insulator-metal and metal-insulator transition in the zero temperature limit. The insulator-metal transition manifests itself as a divergence of the static permittivity observed in lightly compensated semiconductors as the concentration of polarizable impurities increases to the critical level. The metal-insulator transition is signaled by the divergence of the dc electrical resistivity in heavily doped semiconductors as the compensation of the majority impurity increases (or its concentration decreases). The critical impurity concentration corresponds to the coincidence of the percolation level for the majority carriers with the Fermi level. The results of the calculations made with these models fit the experimental data obtained for n-and p-type silicon and germanium within a broad range of their doping levels and impurity compensation.
10 schema:genre article
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf N512bb9ced422493681f63e8809102401
14 Na07a284a78c84dde9fd9baf96241b126
15 sg:journal.1136591
16 schema:keywords DC electrical resistivity
17 Fermi level
18 Ge
19 Si crystals
20 broad range
21 calculations
22 carriers
23 coincidence
24 compensation
25 concentration
26 concentration phase transition
27 critical concentration
28 critical impurity concentration
29 critical level
30 crystalline semiconductors
31 crystals
32 data
33 divergence
34 doping level
35 electrical resistivity
36 electrostatic model
37 experimental data
38 germanium
39 hydrogen-like impurity
40 impurities
41 impurities increases
42 impurity compensation
43 impurity concentration
44 increase
45 insulator-metal transition
46 levels
47 limit
48 majority carriers
49 majority impurity
50 metal-insulator transition
51 model
52 percolation level
53 permittivity
54 phase transition
55 range
56 resistivity
57 results
58 semiconductors
59 silicon
60 static permittivity
61 temperature limit
62 transition
63 type silicon
64 schema:name Electrostatic models of insulator-metal and metal-insulator concentration phase transitions in Ge and Si crystals doped by hydrogen-like impurities
65 schema:pagination 1101-1106
66 schema:productId Na43d00e84bef46c7837330a3c7be9e36
67 Nd66953cef1444a41b63403acea65d702
68 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062736390
69 https://doi.org/10.1134/1.1767252
70 schema:sdDatePublished 2022-05-20T07:22
71 schema:sdLicense https://scigraph.springernature.com/explorer/license/
72 schema:sdPublisher N1069abf3262b45e3bf0350c8d5e030ca
73 schema:url https://doi.org/10.1134/1.1767252
74 sgo:license sg:explorer/license/
75 sgo:sdDataset articles
76 rdf:type schema:ScholarlyArticle
77 N1069abf3262b45e3bf0350c8d5e030ca schema:name Springer Nature - SN SciGraph project
78 rdf:type schema:Organization
79 N512bb9ced422493681f63e8809102401 schema:issueNumber 6
80 rdf:type schema:PublicationIssue
81 N7c8453efed5b4253bd7003463e7987a5 rdf:first sg:person.016623532707.36
82 rdf:rest rdf:nil
83 Na07a284a78c84dde9fd9baf96241b126 schema:volumeNumber 46
84 rdf:type schema:PublicationVolume
85 Na43d00e84bef46c7837330a3c7be9e36 schema:name dimensions_id
86 schema:value pub.1062736390
87 rdf:type schema:PropertyValue
88 Nb5954a1269eb4002b3093b35788c05f3 rdf:first sg:person.0742524034.73
89 rdf:rest N7c8453efed5b4253bd7003463e7987a5
90 Nc4fcba6cbf9f47aebeea66d9edbd8518 rdf:first sg:person.015505352225.90
91 rdf:rest Nb5954a1269eb4002b3093b35788c05f3
92 Nd66953cef1444a41b63403acea65d702 schema:name doi
93 schema:value 10.1134/1.1767252
94 rdf:type schema:PropertyValue
95 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
96 schema:name Physical Sciences
97 rdf:type schema:DefinedTerm
98 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
99 schema:name Classical Physics
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
102 schema:name Condensed Matter Physics
103 rdf:type schema:DefinedTerm
104 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
105 schema:name Quantum Physics
106 rdf:type schema:DefinedTerm
107 sg:journal.1136591 schema:issn 0367-3294
108 1063-7834
109 schema:name Physics of the Solid State
110 schema:publisher Pleiades Publishing
111 rdf:type schema:Periodical
112 sg:person.015505352225.90 schema:affiliation grid-institutes:grid.17678.3f
113 schema:familyName Poklonski
114 schema:givenName N. A.
115 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015505352225.90
116 rdf:type schema:Person
117 sg:person.016623532707.36 schema:affiliation grid-institutes:grid.423485.c
118 schema:familyName Zabrodskii
119 schema:givenName A. G.
120 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36
121 rdf:type schema:Person
122 sg:person.0742524034.73 schema:affiliation grid-institutes:grid.17678.3f
123 schema:familyName Vyrko
124 schema:givenName S. A.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73
126 rdf:type schema:Person
127 sg:pub.10.1007/bf00114337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051277718
128 https://doi.org/10.1007/bf00114337
129 rdf:type schema:CreativeWork
130 grid-institutes:grid.17678.3f schema:alternateName Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus
131 schema:name Belarussian State University, pr. F. Skoriny 4, 220050, Minsk, Belarus
132 rdf:type schema:Organization
133 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
134 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
135 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...