Ontology type: schema:ScholarlyArticle Open Access: True
2004-03
AUTHORS ABSTRACTGiven the anomalous magnetic moments of electrons and positrons in the one-loop approximation, we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg-Euler Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization of the Lagrangian is real for arbitrary magnetic fields. In a weak field, the calculated Lagrangian matches the standard Heisenberg-Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears and the Lagrangian tends to a constant determined by the anomalous magnetic moments of the particles. More... »
PAGES395-402
http://scigraph.springernature.com/pub.10.1134/1.1705691
DOIhttp://dx.doi.org/10.1134/1.1705691
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1048819279
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Physical Sciences",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"name": [
"Moscow State Geological Prospecting University, 118873, Moscow, Russia"
],
"type": "Organization"
},
"familyName": "Rodionov",
"givenName": "V. N.",
"id": "sg:person.011164524043.88",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011164524043.88"
],
"type": "Person"
}
],
"citation": [
{
"id": "https://doi.org/10.1103/physrevlett.89.101804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008329715"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevlett.89.101804",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1008329715"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0370-2693(98)00825-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1015430013"
],
"type": "CreativeWork"
},
{
"id": "sg:pub.10.1007/bf01343663",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1018417263",
"https://doi.org/10.1007/bf01343663"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.64.013014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021440812"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physrevd.64.013014",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1021440812"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0370-2693(96)01346-9",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1038656849"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1016/s0550-3213(02)00242-0",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1046950010"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.51.4944",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060490366"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.1103/physreva.51.4944",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1060490366"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4213/tmf383",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072373974"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4213/tmf525",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072374150"
],
"type": "CreativeWork"
},
{
"id": "https://doi.org/10.4213/tmf677",
"sameAs": [
"https://app.dimensions.ai/details/publication/pub.1072375092"
],
"type": "CreativeWork"
}
],
"datePublished": "2004-03",
"datePublishedReg": "2004-03-01",
"description": "Given the anomalous magnetic moments of electrons and positrons in the one-loop approximation, we calculate the exact Lagrangian of an intense constant magnetic field that replaces the Heisenberg-Euler Lagrangian in traditional quantum electrodynamics (QED). We have established that the derived generalization of the Lagrangian is real for arbitrary magnetic fields. In a weak field, the calculated Lagrangian matches the standard Heisenberg-Euler formula. In extremely strong fields, the field dependence of the Lagrangian completely disappears and the Lagrangian tends to a constant determined by the anomalous magnetic moments of the particles.",
"genre": "research_article",
"id": "sg:pub.10.1134/1.1705691",
"inLanguage": [
"en"
],
"isAccessibleForFree": true,
"isPartOf": [
{
"id": "sg:journal.1295107",
"issn": [
"1063-7761",
"1090-6509"
],
"name": "Journal of Experimental and Theoretical Physics",
"type": "Periodical"
},
{
"issueNumber": "3",
"type": "PublicationIssue"
},
{
"type": "PublicationVolume",
"volumeNumber": "98"
}
],
"name": "Polarization of an electron-positron vacuum by a strong magnetic field with an allowance made for the anomalous magnetic moments of particles",
"pagination": "395-402",
"productId": [
{
"name": "readcube_id",
"type": "PropertyValue",
"value": [
"e8910a3f00728bd7606a09542bdc1ffd5d1b57c73ae3cc6ed2edd09e2f2b5df2"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1134/1.1705691"
]
},
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1048819279"
]
}
],
"sameAs": [
"https://doi.org/10.1134/1.1705691",
"https://app.dimensions.ai/details/publication/pub.1048819279"
],
"sdDataset": "articles",
"sdDatePublished": "2019-04-11T01:04",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8697_00000501.jsonl",
"type": "ScholarlyArticle",
"url": "http://link.springer.com/10.1134/1.1705691"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1705691'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1705691'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1705691'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1705691'
This table displays all metadata directly associated to this object as RDF triples.
91 TRIPLES
21 PREDICATES
37 URIs
19 LITERALS
7 BLANK NODES