Heat capacity of isolated clusters View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2004-02

AUTHORS

R. S. Berry, B. M. Smirnov

ABSTRACT

The character of interaction between thermal (vibrational) and configurational cluster excitations is considered under adiabatic conditions when a cluster is a member of a microcanonical ensemble. The hierarchy of equilibration times determines the character of atomic equilibrium in the cluster. The behavior of atoms in the cluster can be characterized by two effective (mean) temperatures, corresponding to the solid and liquid aggregate states, because the typical time for equilibration of atomic motion is less than the transition time between aggregate states. If the cluster is considered for a time much longer than the typical dwell time in either phase, then it is convenient to characterize the system by only one temperature, which is determined from the statistical-thermodynamic long-time average. These three temperatures are not far apart, nor are the cluster heat capacities evaluated on the basis of these definitions of temperature. The heat capacity of a microcanonical ensemble may be negative for two coexisting phases if the mean temperature is defined in terms of the mean kinetic energy, rather than as the derivative of energy with respect to microcanonical entropy. However, if the configurational excitation energy is smaller than the total excitation energy separating the phases, then the two-state model predicts a positive heat capacity under either definition of temperature. Moreover, if the cluster is sufficiently large, then the maximum values of the microcanonical and canonical heat capacities are equal. More... »

PAGES

366-373

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1675906

DOI

http://dx.doi.org/10.1134/1.1675906

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1005976067


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Chicago", 
          "id": "https://www.grid.ac/institutes/grid.170205.1", 
          "name": [
            "Department of Chemistry, University of Chicago, 60637, Chicago, IL, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berry", 
        "givenName": "R. S.", 
        "id": "sg:person.01265604663.16", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265604663.16"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Institute for High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Smirnov", 
        "givenName": "B. M.", 
        "id": "sg:person.0577500071.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577500071.45"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003398576", 
          "https://doi.org/10.1038/30415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003398576", 
          "https://doi.org/10.1038/30415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.165401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005062523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.67.165401", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005062523"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00268979300100141", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007705939"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.047105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008749423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.047105", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008749423"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/00018737100101231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013547452"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58389-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019054047", 
          "https://doi.org/10.1007/978-3-642-58389-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-58389-6_1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019054047", 
          "https://doi.org/10.1007/978-3-642-58389-6_1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470141748.ch1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021192043"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/9780470122693.ch3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023522830"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1354185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057698014"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.450303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058028321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.457123", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058035135"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.457788", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058035800"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.473502", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058054990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.478838", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058068117"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.479474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058070733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.25.978", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060470296"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreva.30.919", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060473007"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.49.1895", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060716241"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.60.7550", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060724641"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.65.1567", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060801213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.71.3987", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060808166"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.73.2875", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060809928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.79.99", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060816598"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.86.1191", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822519"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.203402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.87.203402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060823968"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.183403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.89.183403", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060825505"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.271.5251.963", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062552253"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004-02", 
    "datePublishedReg": "2004-02-01", 
    "description": "The character of interaction between thermal (vibrational) and configurational cluster excitations is considered under adiabatic conditions when a cluster is a member of a microcanonical ensemble. The hierarchy of equilibration times determines the character of atomic equilibrium in the cluster. The behavior of atoms in the cluster can be characterized by two effective (mean) temperatures, corresponding to the solid and liquid aggregate states, because the typical time for equilibration of atomic motion is less than the transition time between aggregate states. If the cluster is considered for a time much longer than the typical dwell time in either phase, then it is convenient to characterize the system by only one temperature, which is determined from the statistical-thermodynamic long-time average. These three temperatures are not far apart, nor are the cluster heat capacities evaluated on the basis of these definitions of temperature. The heat capacity of a microcanonical ensemble may be negative for two coexisting phases if the mean temperature is defined in terms of the mean kinetic energy, rather than as the derivative of energy with respect to microcanonical entropy. However, if the configurational excitation energy is smaller than the total excitation energy separating the phases, then the two-state model predicts a positive heat capacity under either definition of temperature. Moreover, if the cluster is sufficiently large, then the maximum values of the microcanonical and canonical heat capacities are equal.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1675906", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "2", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "98"
      }
    ], 
    "name": "Heat capacity of isolated clusters", 
    "pagination": "366-373", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "1c7756199f7d65e67ee45743987417698c9aff144f3f581aa64cd52ea1e591d2"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1675906"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1005976067"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1675906", 
      "https://app.dimensions.ai/details/publication/pub.1005976067"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T19:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8681_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1675906"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1675906'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1675906'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1675906'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1675906'


 

This table displays all metadata directly associated to this object as RDF triples.

154 TRIPLES      21 PREDICATES      54 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1675906 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author N70d8e63ff0a64c05b40fdf8ccf7f6aea
4 schema:citation sg:pub.10.1007/978-3-642-58389-6_1
5 sg:pub.10.1038/30415
6 https://doi.org/10.1002/9780470122693.ch3
7 https://doi.org/10.1002/9780470141748.ch1
8 https://doi.org/10.1063/1.1354185
9 https://doi.org/10.1063/1.450303
10 https://doi.org/10.1063/1.457123
11 https://doi.org/10.1063/1.457788
12 https://doi.org/10.1063/1.473502
13 https://doi.org/10.1063/1.478838
14 https://doi.org/10.1063/1.479474
15 https://doi.org/10.1080/00018737100101231
16 https://doi.org/10.1080/00268979300100141
17 https://doi.org/10.1103/physreva.25.978
18 https://doi.org/10.1103/physreva.30.919
19 https://doi.org/10.1103/physrevb.67.165401
20 https://doi.org/10.1103/physreve.49.1895
21 https://doi.org/10.1103/physreve.60.7550
22 https://doi.org/10.1103/physreve.64.047105
23 https://doi.org/10.1103/physrevlett.65.1567
24 https://doi.org/10.1103/physrevlett.71.3987
25 https://doi.org/10.1103/physrevlett.73.2875
26 https://doi.org/10.1103/physrevlett.79.99
27 https://doi.org/10.1103/physrevlett.86.1191
28 https://doi.org/10.1103/physrevlett.87.203402
29 https://doi.org/10.1103/physrevlett.89.183403
30 https://doi.org/10.1126/science.271.5251.963
31 schema:datePublished 2004-02
32 schema:datePublishedReg 2004-02-01
33 schema:description The character of interaction between thermal (vibrational) and configurational cluster excitations is considered under adiabatic conditions when a cluster is a member of a microcanonical ensemble. The hierarchy of equilibration times determines the character of atomic equilibrium in the cluster. The behavior of atoms in the cluster can be characterized by two effective (mean) temperatures, corresponding to the solid and liquid aggregate states, because the typical time for equilibration of atomic motion is less than the transition time between aggregate states. If the cluster is considered for a time much longer than the typical dwell time in either phase, then it is convenient to characterize the system by only one temperature, which is determined from the statistical-thermodynamic long-time average. These three temperatures are not far apart, nor are the cluster heat capacities evaluated on the basis of these definitions of temperature. The heat capacity of a microcanonical ensemble may be negative for two coexisting phases if the mean temperature is defined in terms of the mean kinetic energy, rather than as the derivative of energy with respect to microcanonical entropy. However, if the configurational excitation energy is smaller than the total excitation energy separating the phases, then the two-state model predicts a positive heat capacity under either definition of temperature. Moreover, if the cluster is sufficiently large, then the maximum values of the microcanonical and canonical heat capacities are equal.
34 schema:genre research_article
35 schema:inLanguage en
36 schema:isAccessibleForFree false
37 schema:isPartOf N07c4a04010204f44b460f311157f5b81
38 N3f35df92d16144628a790f1b33186dde
39 sg:journal.1295107
40 schema:name Heat capacity of isolated clusters
41 schema:pagination 366-373
42 schema:productId N19fcfadc4f1a4879b4f2a3f695816ff8
43 N78b1ab53e5124cf68b1edfdd82587d1b
44 Nc5d833f721af4db7a53e8a356d418677
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005976067
46 https://doi.org/10.1134/1.1675906
47 schema:sdDatePublished 2019-04-10T19:54
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher N898f0c49ae044173b61c5bae47519eee
50 schema:url http://link.springer.com/10.1134/1.1675906
51 sgo:license sg:explorer/license/
52 sgo:sdDataset articles
53 rdf:type schema:ScholarlyArticle
54 N07c4a04010204f44b460f311157f5b81 schema:issueNumber 2
55 rdf:type schema:PublicationIssue
56 N19fcfadc4f1a4879b4f2a3f695816ff8 schema:name readcube_id
57 schema:value 1c7756199f7d65e67ee45743987417698c9aff144f3f581aa64cd52ea1e591d2
58 rdf:type schema:PropertyValue
59 N201cde300440433191b64884d709769a rdf:first sg:person.0577500071.45
60 rdf:rest rdf:nil
61 N3f35df92d16144628a790f1b33186dde schema:volumeNumber 98
62 rdf:type schema:PublicationVolume
63 N70d8e63ff0a64c05b40fdf8ccf7f6aea rdf:first sg:person.01265604663.16
64 rdf:rest N201cde300440433191b64884d709769a
65 N78b1ab53e5124cf68b1edfdd82587d1b schema:name doi
66 schema:value 10.1134/1.1675906
67 rdf:type schema:PropertyValue
68 N898f0c49ae044173b61c5bae47519eee schema:name Springer Nature - SN SciGraph project
69 rdf:type schema:Organization
70 Nc5d833f721af4db7a53e8a356d418677 schema:name dimensions_id
71 schema:value pub.1005976067
72 rdf:type schema:PropertyValue
73 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Sciences
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
77 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
78 rdf:type schema:DefinedTerm
79 sg:journal.1295107 schema:issn 1063-7761
80 1090-6509
81 schema:name Journal of Experimental and Theoretical Physics
82 rdf:type schema:Periodical
83 sg:person.01265604663.16 schema:affiliation https://www.grid.ac/institutes/grid.170205.1
84 schema:familyName Berry
85 schema:givenName R. S.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01265604663.16
87 rdf:type schema:Person
88 sg:person.0577500071.45 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
89 schema:familyName Smirnov
90 schema:givenName B. M.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0577500071.45
92 rdf:type schema:Person
93 sg:pub.10.1007/978-3-642-58389-6_1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019054047
94 https://doi.org/10.1007/978-3-642-58389-6_1
95 rdf:type schema:CreativeWork
96 sg:pub.10.1038/30415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003398576
97 https://doi.org/10.1038/30415
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1002/9780470122693.ch3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023522830
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1002/9780470141748.ch1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021192043
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1063/1.1354185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057698014
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1063/1.450303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058028321
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1063/1.457123 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035135
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1063/1.457788 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058035800
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1063/1.473502 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058054990
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1063/1.478838 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058068117
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1063/1.479474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058070733
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1080/00018737100101231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013547452
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1080/00268979300100141 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007705939
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1103/physreva.25.978 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060470296
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1103/physreva.30.919 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060473007
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1103/physrevb.67.165401 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005062523
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1103/physreve.49.1895 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060716241
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1103/physreve.60.7550 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060724641
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1103/physreve.64.047105 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008749423
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1103/physrevlett.65.1567 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060801213
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1103/physrevlett.71.3987 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060808166
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1103/physrevlett.73.2875 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060809928
138 rdf:type schema:CreativeWork
139 https://doi.org/10.1103/physrevlett.79.99 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060816598
140 rdf:type schema:CreativeWork
141 https://doi.org/10.1103/physrevlett.86.1191 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822519
142 rdf:type schema:CreativeWork
143 https://doi.org/10.1103/physrevlett.87.203402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060823968
144 rdf:type schema:CreativeWork
145 https://doi.org/10.1103/physrevlett.89.183403 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060825505
146 rdf:type schema:CreativeWork
147 https://doi.org/10.1126/science.271.5251.963 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062552253
148 rdf:type schema:CreativeWork
149 https://www.grid.ac/institutes/grid.170205.1 schema:alternateName University of Chicago
150 schema:name Department of Chemistry, University of Chicago, 60637, Chicago, IL, USA
151 rdf:type schema:Organization
152 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
153 schema:name Institute for High Temperatures, Russian Academy of Sciences, 127412, Moscow, Russia
154 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...