Numerical simulation of the temperature dependence of the ionization energy of hydrogen-like impurities in semiconductors: Application to transmutation-doped Ge: Ga View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-11

AUTHORS

N. A. Poklonskii, S. A. Vyrko, A. G. Zabrodskii, S. V. Egorov

ABSTRACT

An electrostatic model describing the dependence of the thermal ionization energy of impurities on their concentration, compensation factor, and temperature is developed. The model takes into account the screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron) affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal. The results of the numerical study are in agreement with the decrease in the ionization energy that is experimentally observed for moderately compensated Ge: Ga as the temperature and the doping level are decreased. It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maximum at small compensation factors. More... »

PAGES

2053-2059

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1626737

DOI

http://dx.doi.org/10.1134/1.1626737

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029812756


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0203", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Classical Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0204", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Condensed Matter Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Quantum Physics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Poklonskii", 
        "givenName": "N. A.", 
        "id": "sg:person.015656403561.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus", 
          "id": "http://www.grid.ac/institutes/grid.17678.3f", 
          "name": [
            "Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vyrko", 
        "givenName": "S. A.", 
        "id": "sg:person.0742524034.73", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zabrodskii", 
        "givenName": "A. G.", 
        "id": "sg:person.016623532707.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egorov", 
        "givenName": "S. V.", 
        "id": "sg:person.010504641463.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010504641463.43"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00900474", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040322301", 
          "https://doi.org/10.1007/bf00900474"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1134/1.1187702", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038732603", 
          "https://doi.org/10.1134/1.1187702"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-03797-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004969214", 
          "https://doi.org/10.1007/978-3-662-03797-3"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003-11", 
    "datePublishedReg": "2003-11-01", 
    "description": "An electrostatic model describing the dependence of the thermal ionization energy of impurities on their concentration, compensation factor, and temperature is developed. The model takes into account the screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron) affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal. The results of the numerical study are in agreement with the decrease in the ionization energy that is experimentally observed for moderately compensated Ge: Ga as the temperature and the doping level are decreased. It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maximum at small compensation factors.", 
    "genre": "article", 
    "id": "sg:pub.10.1134/1.1626737", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136591", 
        "issn": [
          "0367-3294", 
          "1063-7834"
        ], 
        "name": "Physics of the Solid State", 
        "publisher": "Pleiades Publishing", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "11", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "45"
      }
    ], 
    "keywords": [
      "doping level", 
      "impurity band width", 
      "thermal ionization energy", 
      "low doping levels", 
      "compensation factor", 
      "numerical study", 
      "numerical simulations", 
      "temperature dependence", 
      "impurities", 
      "impurity ions", 
      "hydrogen-like impurity", 
      "undoped crystals", 
      "gas", 
      "energy", 
      "ionization energy", 
      "displacement", 
      "temperature", 
      "Ge", 
      "impurity band", 
      "density of states", 
      "conduction band", 
      "Coulomb field", 
      "semiconductors", 
      "spatial distribution", 
      "functional dependence", 
      "valence band", 
      "energy distribution", 
      "anomalous maximum", 
      "dependence", 
      "simulations", 
      "hole affinity", 
      "edge", 
      "band", 
      "ions", 
      "crystals", 
      "electrostatic model", 
      "distribution", 
      "width", 
      "density", 
      "model", 
      "applications", 
      "holes", 
      "Poisson", 
      "behavior", 
      "field", 
      "agreement", 
      "investigation", 
      "maximum", 
      "account", 
      "results", 
      "respect", 
      "acceptor", 
      "concentration", 
      "decrease", 
      "factors", 
      "state", 
      "changes", 
      "levels", 
      "study", 
      "valence", 
      "affinity", 
      "screening"
    ], 
    "name": "Numerical simulation of the temperature dependence of the ionization energy of hydrogen-like impurities in semiconductors: Application to transmutation-doped Ge: Ga", 
    "pagination": "2053-2059", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029812756"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1626737"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1626737", 
      "https://app.dimensions.ai/details/publication/pub.1029812756"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-05-10T09:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/article/article_363.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1134/1.1626737"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1626737'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1626737'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1626737'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1626737'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      22 PREDICATES      93 URIs      80 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1626737 schema:about anzsrc-for:02
2 anzsrc-for:0203
3 anzsrc-for:0204
4 anzsrc-for:0206
5 schema:author N201c91d099b142d4a16767ed0b2d704b
6 schema:citation sg:pub.10.1007/978-3-662-03797-3
7 sg:pub.10.1007/bf00900474
8 sg:pub.10.1134/1.1187702
9 schema:datePublished 2003-11
10 schema:datePublishedReg 2003-11-01
11 schema:description An electrostatic model describing the dependence of the thermal ionization energy of impurities on their concentration, compensation factor, and temperature is developed. The model takes into account the screening of impurity ions by holes (electrons) hopping from impurity to impurity, the change in the impurity-band width, and its displacement with respect to the edge of the valence band for acceptors (conduction band for donors). The displacement of the impurity band is due to the functional dependence of the hole (electron) affinity of the ionized acceptor (donor) on the screening of the Coulomb field of the ions. The spatial distribution of the impurity ions over the crystal was assumed to be Poisson-like, and the energy distribution was assumed to be normal (Gaussian). For the relatively low doping levels under investigation, the behavior of the density of states at the edges of the valence and conduction bands was assumed to be the same as for the undoped crystal. The results of the numerical study are in agreement with the decrease in the ionization energy that is experimentally observed for moderately compensated Ge: Ga as the temperature and the doping level are decreased. It is predicted that the temperature dependence of the thermal ionization energy has a small anomalous maximum at small compensation factors.
12 schema:genre article
13 schema:inLanguage en
14 schema:isAccessibleForFree false
15 schema:isPartOf N3eb6ed96eb1f4abf9078c4a21167da67
16 N98d27606c3ba4433a84a25fd6c9b0777
17 sg:journal.1136591
18 schema:keywords Coulomb field
19 Ge
20 Poisson
21 acceptor
22 account
23 affinity
24 agreement
25 anomalous maximum
26 applications
27 band
28 behavior
29 changes
30 compensation factor
31 concentration
32 conduction band
33 crystals
34 decrease
35 density
36 density of states
37 dependence
38 displacement
39 distribution
40 doping level
41 edge
42 electrostatic model
43 energy
44 energy distribution
45 factors
46 field
47 functional dependence
48 gas
49 hole affinity
50 holes
51 hydrogen-like impurity
52 impurities
53 impurity band
54 impurity band width
55 impurity ions
56 investigation
57 ionization energy
58 ions
59 levels
60 low doping levels
61 maximum
62 model
63 numerical simulations
64 numerical study
65 respect
66 results
67 screening
68 semiconductors
69 simulations
70 spatial distribution
71 state
72 study
73 temperature
74 temperature dependence
75 thermal ionization energy
76 undoped crystals
77 valence
78 valence band
79 width
80 schema:name Numerical simulation of the temperature dependence of the ionization energy of hydrogen-like impurities in semiconductors: Application to transmutation-doped Ge: Ga
81 schema:pagination 2053-2059
82 schema:productId N932ba59d684344ae999a90565d7f5243
83 Nc98cc521f71e4d9db0fd5862a8e00d14
84 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029812756
85 https://doi.org/10.1134/1.1626737
86 schema:sdDatePublished 2022-05-10T09:53
87 schema:sdLicense https://scigraph.springernature.com/explorer/license/
88 schema:sdPublisher Nf957dfa97f9c455087333a236353605f
89 schema:url https://doi.org/10.1134/1.1626737
90 sgo:license sg:explorer/license/
91 sgo:sdDataset articles
92 rdf:type schema:ScholarlyArticle
93 N201c91d099b142d4a16767ed0b2d704b rdf:first sg:person.015656403561.19
94 rdf:rest N729c5e74a02747189df18558fbe07069
95 N3a5966b8c98743c284c9b2013c6b3ec2 rdf:first sg:person.016623532707.36
96 rdf:rest Ndccbce93866d4292b19eb19cdf961563
97 N3eb6ed96eb1f4abf9078c4a21167da67 schema:volumeNumber 45
98 rdf:type schema:PublicationVolume
99 N729c5e74a02747189df18558fbe07069 rdf:first sg:person.0742524034.73
100 rdf:rest N3a5966b8c98743c284c9b2013c6b3ec2
101 N932ba59d684344ae999a90565d7f5243 schema:name doi
102 schema:value 10.1134/1.1626737
103 rdf:type schema:PropertyValue
104 N98d27606c3ba4433a84a25fd6c9b0777 schema:issueNumber 11
105 rdf:type schema:PublicationIssue
106 Nc98cc521f71e4d9db0fd5862a8e00d14 schema:name dimensions_id
107 schema:value pub.1029812756
108 rdf:type schema:PropertyValue
109 Ndccbce93866d4292b19eb19cdf961563 rdf:first sg:person.010504641463.43
110 rdf:rest rdf:nil
111 Nf957dfa97f9c455087333a236353605f schema:name Springer Nature - SN SciGraph project
112 rdf:type schema:Organization
113 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
114 schema:name Physical Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0203 schema:inDefinedTermSet anzsrc-for:
117 schema:name Classical Physics
118 rdf:type schema:DefinedTerm
119 anzsrc-for:0204 schema:inDefinedTermSet anzsrc-for:
120 schema:name Condensed Matter Physics
121 rdf:type schema:DefinedTerm
122 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
123 schema:name Quantum Physics
124 rdf:type schema:DefinedTerm
125 sg:journal.1136591 schema:issn 0367-3294
126 1063-7834
127 schema:name Physics of the Solid State
128 schema:publisher Pleiades Publishing
129 rdf:type schema:Periodical
130 sg:person.010504641463.43 schema:affiliation grid-institutes:grid.423485.c
131 schema:familyName Egorov
132 schema:givenName S. V.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010504641463.43
134 rdf:type schema:Person
135 sg:person.015656403561.19 schema:affiliation grid-institutes:grid.17678.3f
136 schema:familyName Poklonskii
137 schema:givenName N. A.
138 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015656403561.19
139 rdf:type schema:Person
140 sg:person.016623532707.36 schema:affiliation grid-institutes:grid.423485.c
141 schema:familyName Zabrodskii
142 schema:givenName A. G.
143 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016623532707.36
144 rdf:type schema:Person
145 sg:person.0742524034.73 schema:affiliation grid-institutes:grid.17678.3f
146 schema:familyName Vyrko
147 schema:givenName S. A.
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0742524034.73
149 rdf:type schema:Person
150 sg:pub.10.1007/978-3-662-03797-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004969214
151 https://doi.org/10.1007/978-3-662-03797-3
152 rdf:type schema:CreativeWork
153 sg:pub.10.1007/bf00900474 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040322301
154 https://doi.org/10.1007/bf00900474
155 rdf:type schema:CreativeWork
156 sg:pub.10.1134/1.1187702 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038732603
157 https://doi.org/10.1134/1.1187702
158 rdf:type schema:CreativeWork
159 grid-institutes:grid.17678.3f schema:alternateName Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus
160 schema:name Belarussian State University, pr. F. Skarina 4, 220050, Minsk, Belarus
161 rdf:type schema:Organization
162 grid-institutes:grid.423485.c schema:alternateName Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
163 schema:name Ioffe Physicotechnical Institute, Russian Academy of Sciences, Politekhnicheskaya ul. 26, 194021, St. Petersburg, Russia
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...