Extremum of the percolation cluster surface View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-02

AUTHORS

P. S. Grinchuk, O. S. Rabinovich

ABSTRACT

The internal and external surfaces of a percolation cluster, as well as the total surface of the entire percolation system, are investigated numerically and analytically. Numerical simulation is carried out using the Monte Carlo method for problems of percolation over lattice sites and bonds on square and simple cubic lattices. Analytic expressions derived by using the probabilistic approach describe the behavior of such surfaces to a high degree of accuracy. It is shown that both the external and total surface areas of a percolation cluster, as well as the total area of the surface of the entire percolation system, have a peak for a certain (different in the general case) fraction of occupied sites (in the site problem) or bonds (in the bond problem). Two examples of technological processes (current generation in a fuel cell and self-propagating high-temperature synthesis in heterogeneous condensed systems) in which the surface of a percolation cluster plays a significant role are discussed. More... »

PAGES

301-309

References to SciGraph publications

  • 1976-11. Monte Carlo studies of percolation phenomena for a simple cubic lattice in JOURNAL OF STATISTICAL PHYSICS
  • 1988. Fractals in NONE
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1134/1.1560401

    DOI

    http://dx.doi.org/10.1134/1.1560401

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1042124912


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus", 
              "id": "http://www.grid.ac/institutes/grid.410300.6", 
              "name": [
                "Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Grinchuk", 
            "givenName": "P. S.", 
            "id": "sg:person.01037416256.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus", 
              "id": "http://www.grid.ac/institutes/grid.410300.6", 
              "name": [
                "Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Rabinovich", 
            "givenName": "O. S.", 
            "id": "sg:person.07721163207.50", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721163207.50"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/978-1-4899-2124-6", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1043447712", 
              "https://doi.org/10.1007/978-1-4899-2124-6"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf01020338", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037774545", 
              "https://doi.org/10.1007/bf01020338"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-02", 
        "datePublishedReg": "2003-02-01", 
        "description": "The internal and external surfaces of a percolation cluster, as well as the total surface of the entire percolation system, are investigated numerically and analytically. Numerical simulation is carried out using the Monte Carlo method for problems of percolation over lattice sites and bonds on square and simple cubic lattices. Analytic expressions derived by using the probabilistic approach describe the behavior of such surfaces to a high degree of accuracy. It is shown that both the external and total surface areas of a percolation cluster, as well as the total area of the surface of the entire percolation system, have a peak for a certain (different in the general case) fraction of occupied sites (in the site problem) or bonds (in the bond problem). Two examples of technological processes (current generation in a fuel cell and self-propagating high-temperature synthesis in heterogeneous condensed systems) in which the surface of a percolation cluster plays a significant role are discussed.", 
        "genre": "article", 
        "id": "sg:pub.10.1134/1.1560401", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1295107", 
            "issn": [
              "1063-7761", 
              "1090-6509"
            ], 
            "name": "Journal of Experimental and Theoretical Physics", 
            "publisher": "Pleiades Publishing", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "2", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "96"
          }
        ], 
        "keywords": [
          "cluster surface", 
          "surface area", 
          "total surface area", 
          "external surface", 
          "such surfaces", 
          "bonds", 
          "surface", 
          "lattice sites", 
          "technological processes", 
          "total surface", 
          "cubic lattice", 
          "certain fraction", 
          "clusters", 
          "simple cubic lattice", 
          "lattice", 
          "peak", 
          "percolation clusters", 
          "high degree", 
          "sites", 
          "significant role", 
          "fraction", 
          "behavior", 
          "process", 
          "method", 
          "Monte Carlo method", 
          "system", 
          "problem of percolation", 
          "percolation system", 
          "percolation", 
          "Carlo method", 
          "area", 
          "simulations", 
          "degree", 
          "example", 
          "approach", 
          "extrema", 
          "role", 
          "analytic expressions", 
          "accuracy", 
          "total area", 
          "numerical simulations", 
          "problem", 
          "probabilistic approach", 
          "expression", 
          "entire percolation system", 
          "percolation cluster surface"
        ], 
        "name": "Extremum of the percolation cluster surface", 
        "pagination": "301-309", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1042124912"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1134/1.1560401"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1134/1.1560401", 
          "https://app.dimensions.ai/details/publication/pub.1042124912"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2021-11-01T18:06", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/article/article_370.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1134/1.1560401"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1560401'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1560401'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1560401'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1560401'


     

    This table displays all metadata directly associated to this object as RDF triples.

    119 TRIPLES      22 PREDICATES      74 URIs      64 LITERALS      6 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1134/1.1560401 schema:about anzsrc-for:01
    2 anzsrc-for:02
    3 schema:author Nfc998e83ba844e30aba493e491187972
    4 schema:citation sg:pub.10.1007/978-1-4899-2124-6
    5 sg:pub.10.1007/bf01020338
    6 schema:datePublished 2003-02
    7 schema:datePublishedReg 2003-02-01
    8 schema:description The internal and external surfaces of a percolation cluster, as well as the total surface of the entire percolation system, are investigated numerically and analytically. Numerical simulation is carried out using the Monte Carlo method for problems of percolation over lattice sites and bonds on square and simple cubic lattices. Analytic expressions derived by using the probabilistic approach describe the behavior of such surfaces to a high degree of accuracy. It is shown that both the external and total surface areas of a percolation cluster, as well as the total area of the surface of the entire percolation system, have a peak for a certain (different in the general case) fraction of occupied sites (in the site problem) or bonds (in the bond problem). Two examples of technological processes (current generation in a fuel cell and self-propagating high-temperature synthesis in heterogeneous condensed systems) in which the surface of a percolation cluster plays a significant role are discussed.
    9 schema:genre article
    10 schema:inLanguage en
    11 schema:isAccessibleForFree false
    12 schema:isPartOf N77e6b82885c647b382c7a6b983bfad1e
    13 Nbdbcfb8b8b114dd4a25a5e3d7621f5b3
    14 sg:journal.1295107
    15 schema:keywords Carlo method
    16 Monte Carlo method
    17 accuracy
    18 analytic expressions
    19 approach
    20 area
    21 behavior
    22 bonds
    23 certain fraction
    24 cluster surface
    25 clusters
    26 cubic lattice
    27 degree
    28 entire percolation system
    29 example
    30 expression
    31 external surface
    32 extrema
    33 fraction
    34 high degree
    35 lattice
    36 lattice sites
    37 method
    38 numerical simulations
    39 peak
    40 percolation
    41 percolation cluster surface
    42 percolation clusters
    43 percolation system
    44 probabilistic approach
    45 problem
    46 problem of percolation
    47 process
    48 role
    49 significant role
    50 simple cubic lattice
    51 simulations
    52 sites
    53 such surfaces
    54 surface
    55 surface area
    56 system
    57 technological processes
    58 total area
    59 total surface
    60 total surface area
    61 schema:name Extremum of the percolation cluster surface
    62 schema:pagination 301-309
    63 schema:productId N11884fb903cb4aa58b564e0041910a56
    64 N90ffba31992f4b7f99f9270ab2295443
    65 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042124912
    66 https://doi.org/10.1134/1.1560401
    67 schema:sdDatePublished 2021-11-01T18:06
    68 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    69 schema:sdPublisher Nf7f1f3bcf33a43828d36eb34f76ab73d
    70 schema:url https://doi.org/10.1134/1.1560401
    71 sgo:license sg:explorer/license/
    72 sgo:sdDataset articles
    73 rdf:type schema:ScholarlyArticle
    74 N11884fb903cb4aa58b564e0041910a56 schema:name dimensions_id
    75 schema:value pub.1042124912
    76 rdf:type schema:PropertyValue
    77 N2d7c02b8ce434a0fadf4a5830bc15546 rdf:first sg:person.07721163207.50
    78 rdf:rest rdf:nil
    79 N77e6b82885c647b382c7a6b983bfad1e schema:issueNumber 2
    80 rdf:type schema:PublicationIssue
    81 N90ffba31992f4b7f99f9270ab2295443 schema:name doi
    82 schema:value 10.1134/1.1560401
    83 rdf:type schema:PropertyValue
    84 Nbdbcfb8b8b114dd4a25a5e3d7621f5b3 schema:volumeNumber 96
    85 rdf:type schema:PublicationVolume
    86 Nf7f1f3bcf33a43828d36eb34f76ab73d schema:name Springer Nature - SN SciGraph project
    87 rdf:type schema:Organization
    88 Nfc998e83ba844e30aba493e491187972 rdf:first sg:person.01037416256.50
    89 rdf:rest N2d7c02b8ce434a0fadf4a5830bc15546
    90 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    91 schema:name Mathematical Sciences
    92 rdf:type schema:DefinedTerm
    93 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    94 schema:name Physical Sciences
    95 rdf:type schema:DefinedTerm
    96 sg:journal.1295107 schema:issn 1063-7761
    97 1090-6509
    98 schema:name Journal of Experimental and Theoretical Physics
    99 schema:publisher Pleiades Publishing
    100 rdf:type schema:Periodical
    101 sg:person.01037416256.50 schema:affiliation grid-institutes:grid.410300.6
    102 schema:familyName Grinchuk
    103 schema:givenName P. S.
    104 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01037416256.50
    105 rdf:type schema:Person
    106 sg:person.07721163207.50 schema:affiliation grid-institutes:grid.410300.6
    107 schema:familyName Rabinovich
    108 schema:givenName O. S.
    109 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07721163207.50
    110 rdf:type schema:Person
    111 sg:pub.10.1007/978-1-4899-2124-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043447712
    112 https://doi.org/10.1007/978-1-4899-2124-6
    113 rdf:type schema:CreativeWork
    114 sg:pub.10.1007/bf01020338 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037774545
    115 https://doi.org/10.1007/bf01020338
    116 rdf:type schema:CreativeWork
    117 grid-institutes:grid.410300.6 schema:alternateName Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus
    118 schema:name Lykov Institute of Mass and Heat Exchange, Belarussian Academy of Sciences, 220072, Minsk, Belarus
    119 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...