On the Aizenman exponent in critical percolation View Full Text


Ontology type: schema:ScholarlyArticle      Open Access: True


Article Info

DATE

2002-10

AUTHORS

L. N. Shchur, T. Rostunov

ABSTRACT

The probabilities of clusters spanning a hypercube of dimension two to seven along one axis of a percolation system under criticality were investigated numerically. We used a modified Hoshen-Kopelman algorithm combined with Grassberger’s “go with the winner” strategy for the site percolation. We carried out a finite-size analysis of the data and found that the probabilities confirm Aizenman’s proposal of the multiplicity exponent for dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also discussed. More... »

PAGES

475-480

Journal

TITLE

JETP Letters

ISSUE

7

VOLUME

76

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1528706

DOI

http://dx.doi.org/10.1134/1.1528706

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1051640396


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchur", 
        "givenName": "L. N.", 
        "id": "sg:person.0644514541.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rostunov", 
        "givenName": "T.", 
        "id": "sg:person.011721363624.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721363624.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.82.880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003142497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.880", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003142497"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(02)00205-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016501111"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0010-4655(99)00286-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023825842"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84868-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027887038", 
          "https://doi.org/10.1007/978-3-642-84868-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-642-84868-1", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027887038", 
          "https://doi.org/10.1007/978-3-642-84868-1"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(96)00626-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029137783"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/31/5/003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035629924"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.4104", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047176278"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1088/0305-4470/31/40/009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048289869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.64.026115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052616655"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0764-4442(01)01991-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053589555"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.3438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.14.3438", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060521624"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.2670", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805576"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183197000205", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1142/s0129183197000394", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062906697"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-10", 
    "datePublishedReg": "2002-10-01", 
    "description": "The probabilities of clusters spanning a hypercube of dimension two to seven along one axis of a percolation system under criticality were investigated numerically. We used a modified Hoshen-Kopelman algorithm combined with Grassberger\u2019s \u201cgo with the winner\u201d strategy for the site percolation. We carried out a finite-size analysis of the data and found that the probabilities confirm Aizenman\u2019s proposal of the multiplicity exponent for dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also discussed.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1528706", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": [
      {
        "id": "sg:journal.1052174", 
        "issn": [
          "0021-3640", 
          "1090-6487"
        ], 
        "name": "JETP Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "7", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "76"
      }
    ], 
    "name": "On the Aizenman exponent in critical percolation", 
    "pagination": "475-480", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "f5fd4cb51dc422815880c933435b132692b3aa8412ed212a20887fb44b3067c1"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1528706"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1051640396"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1528706", 
      "https://app.dimensions.ai/details/publication/pub.1051640396"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000501.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1528706"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1528706'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1528706'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1528706'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1528706'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      21 PREDICATES      41 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1528706 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N65d5809d6f4d427788d9d3e3aef6c7fd
4 schema:citation sg:pub.10.1007/978-3-642-84868-1
5 https://doi.org/10.1016/s0010-4655(02)00205-9
6 https://doi.org/10.1016/s0010-4655(99)00286-6
7 https://doi.org/10.1016/s0550-3213(96)00626-8
8 https://doi.org/10.1016/s0764-4442(01)01991-7
9 https://doi.org/10.1088/0305-4470/31/40/009
10 https://doi.org/10.1088/0305-4470/31/5/003
11 https://doi.org/10.1103/physrevb.14.3438
12 https://doi.org/10.1103/physreve.64.026115
13 https://doi.org/10.1103/physrevlett.69.2670
14 https://doi.org/10.1103/physrevlett.82.880
15 https://doi.org/10.1103/physrevlett.85.4104
16 https://doi.org/10.1142/s0129183197000205
17 https://doi.org/10.1142/s0129183197000394
18 schema:datePublished 2002-10
19 schema:datePublishedReg 2002-10-01
20 schema:description The probabilities of clusters spanning a hypercube of dimension two to seven along one axis of a percolation system under criticality were investigated numerically. We used a modified Hoshen-Kopelman algorithm combined with Grassberger’s “go with the winner” strategy for the site percolation. We carried out a finite-size analysis of the data and found that the probabilities confirm Aizenman’s proposal of the multiplicity exponent for dimensions three to five. A crossover to the mean-field behavior around the upper critical dimension is also discussed.
21 schema:genre research_article
22 schema:inLanguage en
23 schema:isAccessibleForFree true
24 schema:isPartOf N619f38ec949f478d97ac8191e83105a6
25 N8a6a19fc28514d3ba6ceab5eb1dbb9be
26 sg:journal.1052174
27 schema:name On the Aizenman exponent in critical percolation
28 schema:pagination 475-480
29 schema:productId Nce75a7cb66b14443a3ff1e8630675521
30 Nd33d43e65de24df59f79d71a71a693e4
31 Ndb1508b112424e509a746d7624954fbc
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051640396
33 https://doi.org/10.1134/1.1528706
34 schema:sdDatePublished 2019-04-10T22:29
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N92826f55a2cd45a8a5f12e0c83156d32
37 schema:url http://link.springer.com/10.1134/1.1528706
38 sgo:license sg:explorer/license/
39 sgo:sdDataset articles
40 rdf:type schema:ScholarlyArticle
41 N619f38ec949f478d97ac8191e83105a6 schema:issueNumber 7
42 rdf:type schema:PublicationIssue
43 N65d5809d6f4d427788d9d3e3aef6c7fd rdf:first sg:person.0644514541.83
44 rdf:rest N6cf3844262e040c9a69d988c05b28c52
45 N6cf3844262e040c9a69d988c05b28c52 rdf:first sg:person.011721363624.07
46 rdf:rest rdf:nil
47 N8a6a19fc28514d3ba6ceab5eb1dbb9be schema:volumeNumber 76
48 rdf:type schema:PublicationVolume
49 N92826f55a2cd45a8a5f12e0c83156d32 schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 Nce75a7cb66b14443a3ff1e8630675521 schema:name dimensions_id
52 schema:value pub.1051640396
53 rdf:type schema:PropertyValue
54 Nd33d43e65de24df59f79d71a71a693e4 schema:name doi
55 schema:value 10.1134/1.1528706
56 rdf:type schema:PropertyValue
57 Ndb1508b112424e509a746d7624954fbc schema:name readcube_id
58 schema:value f5fd4cb51dc422815880c933435b132692b3aa8412ed212a20887fb44b3067c1
59 rdf:type schema:PropertyValue
60 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
61 schema:name Mathematical Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
64 schema:name Statistics
65 rdf:type schema:DefinedTerm
66 sg:journal.1052174 schema:issn 0021-3640
67 1090-6487
68 schema:name JETP Letters
69 rdf:type schema:Periodical
70 sg:person.011721363624.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
71 schema:familyName Rostunov
72 schema:givenName T.
73 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721363624.07
74 rdf:type schema:Person
75 sg:person.0644514541.83 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
76 schema:familyName Shchur
77 schema:givenName L. N.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83
79 rdf:type schema:Person
80 sg:pub.10.1007/978-3-642-84868-1 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027887038
81 https://doi.org/10.1007/978-3-642-84868-1
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1016/s0010-4655(02)00205-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016501111
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1016/s0010-4655(99)00286-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023825842
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1016/s0550-3213(96)00626-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029137783
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1016/s0764-4442(01)01991-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053589555
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1088/0305-4470/31/40/009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048289869
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1088/0305-4470/31/5/003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035629924
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1103/physrevb.14.3438 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060521624
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1103/physreve.64.026115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052616655
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1103/physrevlett.69.2670 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805576
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1103/physrevlett.82.880 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003142497
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1103/physrevlett.85.4104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047176278
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1142/s0129183197000205 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906678
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1142/s0129183197000394 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062906697
108 rdf:type schema:CreativeWork
109 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
110 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow region, Russia
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...