Early stages of generation of two-dimensional structures by the Hastings-Levitov method of conformal mapping dynamics View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-07

AUTHORS

T. A. Rostunov, L. N. Shchur

ABSTRACT

Two-dimensional structures obtained by the Hastings-Levitov conformal mapping were studied for a relatively small number of mappings n. The fractal dimension D of these structures is computed by the recent Davidovitch-Procaccia technique [6] as a function of n. For small n < n0 (where n0 is the number of particles at the first layer), D exponentially decreases, which should have supported the conclusion made in [6] about the possibility of determining the fractal dimension with an arbitrary accuracy using a relatively small number of mappings n≈ n0. On the other hand, it turned out that D irregularly deviates from a certain quantity D0 depending on the initial size of the bump , which contradicts the main assertion of More... »

PAGES

145-153

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1499912

DOI

http://dx.doi.org/10.1134/1.1499912

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1008586126


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Russian Academy of Sciences", 
          "id": "https://www.grid.ac/institutes/grid.4886.2", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rostunov", 
        "givenName": "T. A.", 
        "id": "sg:person.011721363624.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721363624.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Lorraine", 
          "id": "https://www.grid.ac/institutes/grid.29172.3f", 
          "name": [
            "Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia", 
            "Laboratoire de Physique des Mat\u00e9riaux, Universit\u00e9 Henri Poincar\u00e9, Nancy B.P. 239, F-54506, Vandoevre les Nancy Cedex, France", 
            "I-20126, Milano, Italy"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shchur", 
        "givenName": "L. N.", 
        "id": "sg:person.0644514541.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physreve.55.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007227801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.55.135", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007227801"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018948104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.5523", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018948104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026659681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.061102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026659681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0167-2789(97)00244-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028392742"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(93)90160-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033879552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-4371(93)90160-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033879552"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.046117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042572297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physreve.63.046117", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042572297"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1333284", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057695914"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.1400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.47.1400", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060786491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.52.1033", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060789653"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.78.1719", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060814810"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.22", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060818066"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822065"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.85.3608", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060822065"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-07", 
    "datePublishedReg": "2002-07-01", 
    "description": "Two-dimensional structures obtained by the Hastings-Levitov conformal mapping were studied for a relatively small number of mappings n. The fractal dimension D of these structures is computed by the recent Davidovitch-Procaccia technique [6] as a function of n. For small n < n0 (where n0 is the number of particles at the first layer), D exponentially decreases, which should have supported the conclusion made in [6] about the possibility of determining the fractal dimension with an arbitrary accuracy using a relatively small number of mappings n\u2248 n0. On the other hand, it turned out that D irregularly deviates from a certain quantity D0 depending on the initial size of the bump , which contradicts the main assertion of", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1499912", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1295107", 
        "issn": [
          "1063-7761", 
          "1090-6509"
        ], 
        "name": "Journal of Experimental and Theoretical Physics", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "1", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "95"
      }
    ], 
    "name": "Early stages of generation of two-dimensional structures by the Hastings-Levitov method of conformal mapping dynamics", 
    "pagination": "145-153", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "28e7f5ec48ce548f6ebedb00dd29fbdb9b864dbcca3d445001c302ae99eb79a3"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1499912"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1008586126"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1499912", 
      "https://app.dimensions.ai/details/publication/pub.1008586126"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T18:17", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1499912"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1499912'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1499912'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1499912'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1499912'


 

This table displays all metadata directly associated to this object as RDF triples.

109 TRIPLES      21 PREDICATES      39 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1499912 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Na022b16e13f6483c8ba5f4fd47e1597e
4 schema:citation https://doi.org/10.1016/0378-4371(93)90160-6
5 https://doi.org/10.1016/s0167-2789(97)00244-3
6 https://doi.org/10.1063/1.1333284
7 https://doi.org/10.1103/physreve.55.135
8 https://doi.org/10.1103/physreve.63.046117
9 https://doi.org/10.1103/physreve.63.061102
10 https://doi.org/10.1103/physrevlett.47.1400
11 https://doi.org/10.1103/physrevlett.52.1033
12 https://doi.org/10.1103/physrevlett.78.1719
13 https://doi.org/10.1103/physrevlett.81.22
14 https://doi.org/10.1103/physrevlett.83.5523
15 https://doi.org/10.1103/physrevlett.85.3608
16 schema:datePublished 2002-07
17 schema:datePublishedReg 2002-07-01
18 schema:description Two-dimensional structures obtained by the Hastings-Levitov conformal mapping were studied for a relatively small number of mappings n. The fractal dimension D of these structures is computed by the recent Davidovitch-Procaccia technique [6] as a function of n. For small n < n0 (where n0 is the number of particles at the first layer), D exponentially decreases, which should have supported the conclusion made in [6] about the possibility of determining the fractal dimension with an arbitrary accuracy using a relatively small number of mappings n≈ n0. On the other hand, it turned out that D irregularly deviates from a certain quantity D0 depending on the initial size of the bump , which contradicts the main assertion of
19 schema:genre research_article
20 schema:inLanguage en
21 schema:isAccessibleForFree false
22 schema:isPartOf N114f37f927a04dab889856b9ac387adc
23 N5d2dec2df5704ffea61dca70ea498f2b
24 sg:journal.1295107
25 schema:name Early stages of generation of two-dimensional structures by the Hastings-Levitov method of conformal mapping dynamics
26 schema:pagination 145-153
27 schema:productId N6c5da043273e4d0481754a8590948ab1
28 Nf6d9371899e540c89f5f2539e18a037d
29 Nf7aa8358b2c54e3a87314a0dc24e88e8
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008586126
31 https://doi.org/10.1134/1.1499912
32 schema:sdDatePublished 2019-04-10T18:17
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N7960560a97514553852d2fa5f1489038
35 schema:url http://link.springer.com/10.1134/1.1499912
36 sgo:license sg:explorer/license/
37 sgo:sdDataset articles
38 rdf:type schema:ScholarlyArticle
39 N114f37f927a04dab889856b9ac387adc schema:volumeNumber 95
40 rdf:type schema:PublicationVolume
41 N5d2dec2df5704ffea61dca70ea498f2b schema:issueNumber 1
42 rdf:type schema:PublicationIssue
43 N6c5da043273e4d0481754a8590948ab1 schema:name dimensions_id
44 schema:value pub.1008586126
45 rdf:type schema:PropertyValue
46 N7960560a97514553852d2fa5f1489038 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Na022b16e13f6483c8ba5f4fd47e1597e rdf:first sg:person.011721363624.07
49 rdf:rest Na57078c8cc9c4389b0b0444429fb9334
50 Na57078c8cc9c4389b0b0444429fb9334 rdf:first sg:person.0644514541.83
51 rdf:rest rdf:nil
52 Nf6d9371899e540c89f5f2539e18a037d schema:name doi
53 schema:value 10.1134/1.1499912
54 rdf:type schema:PropertyValue
55 Nf7aa8358b2c54e3a87314a0dc24e88e8 schema:name readcube_id
56 schema:value 28e7f5ec48ce548f6ebedb00dd29fbdb9b864dbcca3d445001c302ae99eb79a3
57 rdf:type schema:PropertyValue
58 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
59 schema:name Mathematical Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
62 schema:name Pure Mathematics
63 rdf:type schema:DefinedTerm
64 sg:journal.1295107 schema:issn 1063-7761
65 1090-6509
66 schema:name Journal of Experimental and Theoretical Physics
67 rdf:type schema:Periodical
68 sg:person.011721363624.07 schema:affiliation https://www.grid.ac/institutes/grid.4886.2
69 schema:familyName Rostunov
70 schema:givenName T. A.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011721363624.07
72 rdf:type schema:Person
73 sg:person.0644514541.83 schema:affiliation https://www.grid.ac/institutes/grid.29172.3f
74 schema:familyName Shchur
75 schema:givenName L. N.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0644514541.83
77 rdf:type schema:Person
78 https://doi.org/10.1016/0378-4371(93)90160-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033879552
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1016/s0167-2789(97)00244-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028392742
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1063/1.1333284 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057695914
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1103/physreve.55.135 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007227801
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1103/physreve.63.046117 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042572297
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1103/physreve.63.061102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026659681
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1103/physrevlett.47.1400 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060786491
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1103/physrevlett.52.1033 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060789653
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1103/physrevlett.78.1719 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060814810
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1103/physrevlett.81.22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060818066
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1103/physrevlett.83.5523 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018948104
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevlett.85.3608 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060822065
101 rdf:type schema:CreativeWork
102 https://www.grid.ac/institutes/grid.29172.3f schema:alternateName University of Lorraine
103 schema:name I-20126, Milano, Italy
104 Laboratoire de Physique des Matériaux, Université Henri Poincaré, Nancy B.P. 239, F-54506, Vandoevre les Nancy Cedex, France
105 Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
106 rdf:type schema:Organization
107 https://www.grid.ac/institutes/grid.4886.2 schema:alternateName Russian Academy of Sciences
108 schema:name Landau Institute for Theoretical Physics, Russian Academy of Sciences, 142432, Chernogolovka, Moscow oblast, Russia
109 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...