Acoustic power mapping for active regions from MDI, HLH, and TON data View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2002-06

AUTHORS

O. V. Ladenkov, F. Hill, Sh. A. Egamberdiev, D. Y. Chou

ABSTRACT

Based on the HLH and TON ground-based helioseismological projects and the SOHO/MDI spaceborne project, we obtained acoustic power maps of active regions averaged over 1 mHz intervals. These maps allowed the spatial and frequency distributions of acoustic power in an active region and its surroundings to be studied. The time step of the HLH data is 42 s, which makes it possible to investigate the acoustic power up to 11.9 mHz. Data in the Ca II K and Ni I lines, which originate in the middle chromosphere and the photosphere, respectively, give an idea of the height distribution of acoustic oscillation energy in the solar atmosphere. The acoustic halo produced by excess acoustic power around sunspots clearly shows up on acoustic maps in the Ca II K line and, to a lesser degree, in the Doppler Ni I line shifts. Ground-based observations also reveal a large enhancement of acoustic power inside sunspots. Our tests show that this effect results from the combination of a high intensity gradient in the data and atmospheric seeing. The latter was reduced by referencing each image to the sunspot. The spatial distribution of power inside the sunspot due to atmospheric seeing was found to depend on the exposure time of the data used. Excluding the nonsolar effects, a common property of all acoustic maps is the suppression of the solar-oscillation acoustic power in active regions. More... »

PAGES

411-418

References to SciGraph publications

Identifiers

URI

http://scigraph.springernature.com/pub.10.1134/1.1484142

DOI

http://dx.doi.org/10.1134/1.1484142

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1004272374


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0906", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Electrical and Electronic Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Association of Universities For Research In Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.62139.3f", 
          "name": [
            "Astronomical Institute, Academy of Sciences of Uzbekistan, Astronomicheskaya ul. 33, 700052, Tashkent, Uzbekistan", 
            "National Solar Observatory, National Optical Astronomical Observatories, Tuson, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Ladenkov", 
        "givenName": "O. V.", 
        "id": "sg:person.014227445341.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227445341.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Association of Universities For Research In Astronomy", 
          "id": "https://www.grid.ac/institutes/grid.62139.3f", 
          "name": [
            "National Solar Observatory, National Optical Astronomical Observatories, Tuson, Arizona, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hill", 
        "givenName": "F.", 
        "id": "sg:person.010276212157.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276212157.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Academy of Sciences Republic of Uzbekistan", 
          "id": "https://www.grid.ac/institutes/grid.419209.7", 
          "name": [
            "Astronomical Institute, Academy of Sciences of Uzbekistan, Astronomicheskaya ul. 33, 700052, Tashkent, Uzbekistan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Egamberdiev", 
        "givenName": "Sh. A.", 
        "id": "sg:person.011307656541.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307656541.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "National Tsing Hua University", 
          "id": "https://www.grid.ac/institutes/grid.38348.34", 
          "name": [
            "Tsing Hua University, Hsin-chu, Taiwan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chou", 
        "givenName": "D. Y.", 
        "id": "sg:person.07546665213.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00733429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014416570", 
          "https://doi.org/10.1007/bf00733429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00733429", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1014416570", 
          "https://doi.org/10.1007/bf00733429"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00732806", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044919951", 
          "https://doi.org/10.1007/bf00732806"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/171477", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058502767"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058504496"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/184949", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058514458"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/186473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058515982"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/306128", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058613650"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/308571", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058616090"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002-06", 
    "datePublishedReg": "2002-06-01", 
    "description": "Based on the HLH and TON ground-based helioseismological projects and the SOHO/MDI spaceborne project, we obtained acoustic power maps of active regions averaged over 1 mHz intervals. These maps allowed the spatial and frequency distributions of acoustic power in an active region and its surroundings to be studied. The time step of the HLH data is 42 s, which makes it possible to investigate the acoustic power up to 11.9 mHz. Data in the Ca II K and Ni I lines, which originate in the middle chromosphere and the photosphere, respectively, give an idea of the height distribution of acoustic oscillation energy in the solar atmosphere. The acoustic halo produced by excess acoustic power around sunspots clearly shows up on acoustic maps in the Ca II K line and, to a lesser degree, in the Doppler Ni I line shifts. Ground-based observations also reveal a large enhancement of acoustic power inside sunspots. Our tests show that this effect results from the combination of a high intensity gradient in the data and atmospheric seeing. The latter was reduced by referencing each image to the sunspot. The spatial distribution of power inside the sunspot due to atmospheric seeing was found to depend on the exposure time of the data used. Excluding the nonsolar effects, a common property of all acoustic maps is the suppression of the solar-oscillation acoustic power in active regions.", 
    "genre": "research_article", 
    "id": "sg:pub.10.1134/1.1484142", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1136271", 
        "issn": [
          "0320-0108", 
          "0360-0327"
        ], 
        "name": "Astronomy Letters", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "28"
      }
    ], 
    "name": "Acoustic power mapping for active regions from MDI, HLH, and TON data", 
    "pagination": "411-418", 
    "productId": [
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "145bad46eb4734a07325eaf26d67aea7fb2594e2268e748b40f368036fdb8f7f"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1134/1.1484142"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1004272374"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1134/1.1484142", 
      "https://app.dimensions.ai/details/publication/pub.1004272374"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2019-04-10T22:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8690_00000498.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "http://link.springer.com/10.1134/1.1484142"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1134/1.1484142'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1134/1.1484142'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1134/1.1484142'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1134/1.1484142'


 

This table displays all metadata directly associated to this object as RDF triples.

115 TRIPLES      21 PREDICATES      35 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1134/1.1484142 schema:about anzsrc-for:09
2 anzsrc-for:0906
3 schema:author N0abe4e3294a84c038d0483e810bfd05a
4 schema:citation sg:pub.10.1007/bf00732806
5 sg:pub.10.1007/bf00733429
6 https://doi.org/10.1086/171477
7 https://doi.org/10.1086/173206
8 https://doi.org/10.1086/184949
9 https://doi.org/10.1086/186473
10 https://doi.org/10.1086/306128
11 https://doi.org/10.1086/308571
12 schema:datePublished 2002-06
13 schema:datePublishedReg 2002-06-01
14 schema:description Based on the HLH and TON ground-based helioseismological projects and the SOHO/MDI spaceborne project, we obtained acoustic power maps of active regions averaged over 1 mHz intervals. These maps allowed the spatial and frequency distributions of acoustic power in an active region and its surroundings to be studied. The time step of the HLH data is 42 s, which makes it possible to investigate the acoustic power up to 11.9 mHz. Data in the Ca II K and Ni I lines, which originate in the middle chromosphere and the photosphere, respectively, give an idea of the height distribution of acoustic oscillation energy in the solar atmosphere. The acoustic halo produced by excess acoustic power around sunspots clearly shows up on acoustic maps in the Ca II K line and, to a lesser degree, in the Doppler Ni I line shifts. Ground-based observations also reveal a large enhancement of acoustic power inside sunspots. Our tests show that this effect results from the combination of a high intensity gradient in the data and atmospheric seeing. The latter was reduced by referencing each image to the sunspot. The spatial distribution of power inside the sunspot due to atmospheric seeing was found to depend on the exposure time of the data used. Excluding the nonsolar effects, a common property of all acoustic maps is the suppression of the solar-oscillation acoustic power in active regions.
15 schema:genre research_article
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N981871f2619b45abad73af0dbdb29e4e
19 Na73ca75cad93420f92c7ab8c5742544c
20 sg:journal.1136271
21 schema:name Acoustic power mapping for active regions from MDI, HLH, and TON data
22 schema:pagination 411-418
23 schema:productId N10a278b402c14a07bc7a94dd5cf89a28
24 Nb5a45f605bd14350a7766658fd31eaf1
25 Ncbfbc0e9715843f6922c95b0cc3ee563
26 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004272374
27 https://doi.org/10.1134/1.1484142
28 schema:sdDatePublished 2019-04-10T22:28
29 schema:sdLicense https://scigraph.springernature.com/explorer/license/
30 schema:sdPublisher N9061f1f8029a4da2966e6b7ab3817c34
31 schema:url http://link.springer.com/10.1134/1.1484142
32 sgo:license sg:explorer/license/
33 sgo:sdDataset articles
34 rdf:type schema:ScholarlyArticle
35 N0abe4e3294a84c038d0483e810bfd05a rdf:first sg:person.014227445341.48
36 rdf:rest Neb67f6be895440eba0f5c5af0a943d20
37 N10a278b402c14a07bc7a94dd5cf89a28 schema:name readcube_id
38 schema:value 145bad46eb4734a07325eaf26d67aea7fb2594e2268e748b40f368036fdb8f7f
39 rdf:type schema:PropertyValue
40 N9061f1f8029a4da2966e6b7ab3817c34 schema:name Springer Nature - SN SciGraph project
41 rdf:type schema:Organization
42 N981871f2619b45abad73af0dbdb29e4e schema:issueNumber 6
43 rdf:type schema:PublicationIssue
44 N9c58fb163bcc4e4584e46c0684378659 rdf:first sg:person.07546665213.30
45 rdf:rest rdf:nil
46 Na73ca75cad93420f92c7ab8c5742544c schema:volumeNumber 28
47 rdf:type schema:PublicationVolume
48 Nb5a45f605bd14350a7766658fd31eaf1 schema:name dimensions_id
49 schema:value pub.1004272374
50 rdf:type schema:PropertyValue
51 Ncbfbc0e9715843f6922c95b0cc3ee563 schema:name doi
52 schema:value 10.1134/1.1484142
53 rdf:type schema:PropertyValue
54 Nd0f54545325346df930854e9ea0f83a8 rdf:first sg:person.011307656541.83
55 rdf:rest N9c58fb163bcc4e4584e46c0684378659
56 Neb67f6be895440eba0f5c5af0a943d20 rdf:first sg:person.010276212157.40
57 rdf:rest Nd0f54545325346df930854e9ea0f83a8
58 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
59 schema:name Engineering
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0906 schema:inDefinedTermSet anzsrc-for:
62 schema:name Electrical and Electronic Engineering
63 rdf:type schema:DefinedTerm
64 sg:journal.1136271 schema:issn 0320-0108
65 0360-0327
66 schema:name Astronomy Letters
67 rdf:type schema:Periodical
68 sg:person.010276212157.40 schema:affiliation https://www.grid.ac/institutes/grid.62139.3f
69 schema:familyName Hill
70 schema:givenName F.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010276212157.40
72 rdf:type schema:Person
73 sg:person.011307656541.83 schema:affiliation https://www.grid.ac/institutes/grid.419209.7
74 schema:familyName Egamberdiev
75 schema:givenName Sh. A.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011307656541.83
77 rdf:type schema:Person
78 sg:person.014227445341.48 schema:affiliation https://www.grid.ac/institutes/grid.62139.3f
79 schema:familyName Ladenkov
80 schema:givenName O. V.
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014227445341.48
82 rdf:type schema:Person
83 sg:person.07546665213.30 schema:affiliation https://www.grid.ac/institutes/grid.38348.34
84 schema:familyName Chou
85 schema:givenName D. Y.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07546665213.30
87 rdf:type schema:Person
88 sg:pub.10.1007/bf00732806 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044919951
89 https://doi.org/10.1007/bf00732806
90 rdf:type schema:CreativeWork
91 sg:pub.10.1007/bf00733429 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014416570
92 https://doi.org/10.1007/bf00733429
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1086/171477 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058502767
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1086/173206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058504496
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1086/184949 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058514458
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/186473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058515982
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1086/306128 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058613650
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1086/308571 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058616090
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.38348.34 schema:alternateName National Tsing Hua University
107 schema:name Tsing Hua University, Hsin-chu, Taiwan
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.419209.7 schema:alternateName Academy of Sciences Republic of Uzbekistan
110 schema:name Astronomical Institute, Academy of Sciences of Uzbekistan, Astronomicheskaya ul. 33, 700052, Tashkent, Uzbekistan
111 rdf:type schema:Organization
112 https://www.grid.ac/institutes/grid.62139.3f schema:alternateName Association of Universities For Research In Astronomy
113 schema:name Astronomical Institute, Academy of Sciences of Uzbekistan, Astronomicheskaya ul. 33, 700052, Tashkent, Uzbekistan
114 National Solar Observatory, National Optical Astronomical Observatories, Tuson, Arizona, USA
115 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...